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Purpose: In laparoscopic surgery, soft tissue deformations substantially change the surgical site,

thus impeding the use of preoperative planning during intraoperative navigation. Extracting depth

information from endoscopic images and building a surface model of the surgical field-of-view is

one way to represent this constantly deforming environment. The information can then be used for

intraoperative registration. Stereo reconstruction is a typical problem within computer vision. How-

ever, most of the available methods do not fulfill the specific requirements in a minimally invasive

setting such as the need of real-time performance, the problem of view-dependent specular reflec-

tions and large curved areas with partly homogeneous or periodic textures and occlusions.

Methods: In this paper, the authors present an approach toward intraoperative surface reconstruction

based on stereo endoscopic images. The authors describe our answer to this problem through correspon-

dence analysis, disparity correction and refinement, 3D reconstruction, point cloud smoothing and

meshing. Real-time performance is achieved by implementing the algorithms on the GPU. The authors

also present a new hybrid CPU-GPU algorithm that unifies the advantages of the CPU and the GPU version.

Results: In a comprehensive evaluation using in vivo data, in silico data from the literature and vir-

tual data from a newly developed simulation environment, the CPU, the GPU, and the hybrid CPU-GPU

versions of the surface reconstruction are compared to a CPU and a GPU algorithm from the literature.

The recommended approach toward intraoperative surface reconstruction can be conducted in real-

time depending on the image resolution (20 fps for the GPU and 14fps for the hybrid CPU-GPU version

on resolution of 640� 480). It is robust to homogeneous regions without texture, large image

changes, noise or errors from camera calibration, and it reconstructs the surface down to sub milli-

meter accuracy. In all the experiments within the simulation environment, the mean distance to

ground truth data is between 0.05 and 0.6 mm for the hybrid CPU-GPU version. The hybrid CPU-GPU

algorithm shows a much more superior performance than its CPU and GPU counterpart (mean dis-

tance reduction 26% and 45%, respectively, for the experiments in the simulation environment).

Conclusions: The recommended approach for surface reconstruction is fast, robust, and accurate. It

can represent changes in the intraoperative environment and can be used to adapt a preoperative

model within the surgical site by registration of these two models. VC 2012 American Association of
Physicists in Medicine. [DOI: 10.1118/1.3681017]

Key words: image-guided therapy, endoscopic procedures, surface reconstruction, intraoperative

registration

I. INTRODUCTION

In the last decades, surgical procedures have changed substan-

tially due to many technological innovations concerning diag-

nosis, treatment planning, and therapy. A good example is the

rise of image-guided neurosurgery. It is now common practice

to use intraoperative navigation systems based on pre-operative

planning in tasks such as biopsy excision, tumor resection, or

defect reconstruction.1 Here, there is a definite increase in the

quality of patient recovery. In other areas, such as laparoscopic

surgery, the application of computer-assisted navigation has not

yet been fully utilized in daily clinical routine. One reason for

this are soft tissue deformations, which change the surgical site

substantially, and therefore hamper the use of pre-operative

planning. In order to adapt the planning, intraoperative sensor

data have to be acquired on a continuous basis and incorporated

into a patient-individual model of the surgical site. This model

can then be registered to preoperative planning data.

In laparoscopic surgery, the endoscope is the typical

intraoperative source of sensor data. Extracting depth
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information from stereo endoscopic images and building a

surface model from the surgical field-of-view is one way to

represent the constantly deforming environment (Fig. 1).

Although the use of stereo endoscopes is still not common

practice in traditional minimally invasive procedures, they

are used in robotic systems such as the daVinci surgical

system. With monocular endoscopes, depth information can

only be acquired using structure from motion,2 shape from

shading,3,4 simultaneous localization and mapping,5 or

structured light.6,7 Structure from motion as well as simul-

taneous localization and mapping both have the disadvant-

age that the endoscope has to be constantly moved in order

to get 3D information, that they need stable features to

track and that it is difficult to recover deformations that

happen during camera motion. Shape from shading

approaches only provide relative depth information, have

problems discriminating concave and convex surfaces and

are sensitive to specular highlights. Structured light

requires an additional projector, which makes miniaturiza-

tion and calibration difficult. Recent hardware technologies

such as time of flight endoscopes are still at the beginning

of their development.8

When stereo images are used, depth information can be

extracted in solving the correspondence problem by finding

similar structures in both images. This is a typical problem in

computer vision and many methods have been developed and

evaluated.9 However, most of them do not fulfill the specific

requirements within a minimally invasive setting, such as the

need for real-time performance, the problem of view-

dependent specular reflections, large curved areas with partly

homogeneous or periodic textures and occlusions due to surgi-

cal instruments.

Many 3D reconstruction approaches particularly devel-

oped for the minimally invasive scenario detect and track

features.10–12 They recover only a sparse surface mostly

using structure from motion or deformation tracking. A

semidense surface is reconstructed by Stoyanov et al.13 At

first, they reconstruct a sparse surface using detected fea-

tures. Next, their 3D information is propagated into neigh-

boring regions by using the matched features as seeds. Chen

et al. also use feature detection to stabilize stereo correspon-

dence calculation.14 They combine a dynamic programming

approach with Delaunay triangulation and planar homogra-

phies. These methods depend on the availability of stable

features in order to work properly. Another select group of

methods use the concept of parametric models to describe

the surface.15,16 These methods are restricted to surfaces

with known geometry where a spatial deformation can be

estimated precisely, such as the surface of a heart. One of

the earliest works in dense surface reconstruction from

stereo endoscopic images is by Devernay et al.17 A standard

correlation-based method is used and registered with a tem-

poral 3D model of the heart. Another method for dense sur-

face reconstruction has been developed by Stoyanov et al.18

Here, images are rectified to facilitate the correspondence

analysis. A hierarchical structure is combined with piecewise

bilinear maps to propagate disparities from low-resolution

images to higher resolutions. Temporal information is also

included in order to track the surface over time. Recent work

in dense surface reconstruction was done by Vagvolgyi et
al.19 They define a new minimization function and solve it

with a global dynamic programming approach on rectified

images. The disparity image is then read out recursively.

The quality of all the described methods above is difficult to

assess because a substantial evaluation of the accuracy,

robustness and speed is not covered in the publications.

This publication presents an extended version of a robust

and dense surface model from stereo endoscopic images with

millimeter accuracy that is reconstructed in real-time.20,21

We describe solutions to disparity calculation and correction,

3D reconstruction and point cloud smoothing and meshing.

Real-time performance is achieved by implementing the

algorithms on the GPU.

General purpose computation on GPUs has become more

and more popular because of its computational power when

using highly parallelized algorithms. Programming language

extensions such as CUDA or OPENCL have made programming

more and more user-friendly. In medical applications, the

use of the GPU for parallel processing has also gained a lot of

momentum in recent years.22
GPUs are now being used, e.g.,

in tomographic image reconstruction,23,24 dose calculation,25

image segmentation,26 image registration,27 or image visual-

ization.28 However, when using GPUs, one has to carefully

consider the application and its disadvantages such as its

FIG. 1. Image from a daVinci intervention and reconstructed point cloud.
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need for highly parallelizable problems, its limited memory,

or the costly memory access.24

The main contributions of this publication are as follows.

We describe in detail a complete redesign of the correspon-

dence analysis method to work on the GPU. In addition, a so-

phisticated disparity post processing on the GPU with

disparity correction and smoothing using bilateral filtering is

introduced. The 3D reconstruction step is complemented by

additional point cloud smoothing. The different algorithms

are combined into a new hybrid CPU-GPU method which uni-

fies the advantages of the CPU and the GPU versions of the sur-

face reconstruction. In an extensive evaluation using in vivo
data, in silico data from the literature and virtual data from a

newly developed simulation environment, the CPU, the GPU,

and the hybrid CPU-GPU versions of the surface reconstruction

method are compared to a CPU and a GPU algorithm from the

literature. The results reflect the quality of the approach

through different stereo sequences and the superior perform-

ance of the hybrid CPU-GPU version.

II. MATERIALS AND METHODS

On the following pages, we present the necessary meth-

ods for reconstructing a surface from endoscopic images

which can be registered with a preoperative model. An out-

line of the workflow can be seen in Fig. 2.

II.A. Preprocessing

The stereo endoscopic images are preprocessed in order to

facilitate the correspondence analysis.29 For this purpose and

for an accurate 3D reconstruction, the intrinsic and extrinsic

camera parameters are needed. We calibrate the camera using

methods from Röhl et al. and the OPENCV library.19,30 As en-

doscopic images are highly distorted, image undistortion has

to be performed. We also rectify the images to reduce the

search space during correspondence analysis. In a final step,

the images are optionally smoothed with a 3� 3 Gauss filter

in order to reduce noise in the images.

II.B. Correspondence analysis

The object of the correspondence analysis in stereo

images is to find points in both images which are the projec-

tion of the same world point into the image planes. The rela-

tionship between corresponding image pixels is described by

the disparity, which is the relative distance between these

pixels. The 3D reconstruction utilizes the detected corre-

spondences and the geometry of the cameras to generate the

three-dimensional structure of the observed scene.

Correspondence analysis methods can be classified into

three groups. Feature-based methods detect and match fea-

tures in both images using their descriptors. Feature detec-

tion is robust and very accurate, but the result is in general a

sparse disparity image and the features are often distributed

unevenly. Correlation- or pixel-based methods try to find

correspondences for each pixel in the image using a similar-

ity measure which is defined by a certain region around this

pixel. These methods are simple and fast, but they often pro-

duce mismatches because each pixel has to be examined in-

dependently. Also, the similarity measures react sensitively

to regions with no or periodic textures, occlusions and image

artefacts. Global methods iteratively find a disparity function

which describes the transformation of the whole image into

the other. The problem presents itself as an energy minimi-

zation problem. These methods produce very accurate

results, even in regions without texture, and lead to a dense

disparity image, but are complex, slow and difficult to

parallelize.

II.B.1. Hybrid recursive matching (CPU version)

The method we use is the Hybrid Recursive Matching

(HRM) algorithm.31 This algorithm, originally developed for

video conferencing systems, is adapted and extended to be

used with stereo endoscopic images.20 The HRM is a combi-

nation of correlation-based and global methods. It recur-

sively propagates the disparity information through the

FIG. 2. Outline of the surface reconstruction workflow.
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image by generating potential correspondence candidates

while using already determined correspondences from neigh-

boring pixels. Additionally, one candidate is obtained from

the disparity image of the previous time step. These candi-

dates are then evaluated with a correlation-based similarity

measure and the best is chosen as the correspondence.

Hereby, a spatial and temporal dependency between dispar-

ities is introduced. This reduces the number of mismatches

in homogeneous regions or regions which remain static over

time. As input, the two rectified and undistorted grey images

from the stereo endoscope, the disparity image from the pre-

vious time step and the already calculated disparities from

the current time step are required [Figs. 3(a) and 3(b)]. As

output, a dense disparity image is produced. The robustness

of the algorithm is increased by iterating in a meandering

pattern through the images and alternating the iteration start-

ing point and direction with each new image pair.

In a two-stage process, consisting of the block recursion

and the pixel recursion, a new disparity value is calculated

for the current pixel by choosing between four different can-

didates in the other image. Three disparity candidates are

generated in the block recursion step. Two originate from

the vertically and horizontally neighboring pixel, the third

from the previous time step. They ensure a smooth disparity

distribution especially in low-textured regions. The fourth is

calculated in the pixel recursion step. Using optical flow

techniques, this step introduces new disparities in regions of

discontinuity or at the edge of the image where no spatial

candidates are known. This candidate is only computed if ei-

ther the similarity error of the best block recursion candidate

exceeds a certain threshold, which indicates such a region,

or if there is no block recursion candidate, e.g., in the first

image pair where no temporal information is given.

For each candidate, a similarity error is calculated by

using block matching and a simplified census similarity mea-

sure.31 This measure only considers relative intensity

changes between pixels. This is beneficial for regions with

global or local intensity changes such as areas near specular-

ities or the image border. Here, comparing absolute inten-

sities would lead to large errors in the similarity measure,

whereas the relative intensity difference often is the same in

both images. The candidate with the smallest error (most

similar neighborhood) is set as the correspondence.

The algorithm has been extended to the level of subpixel

precision. This is due to our camera setup. Because of the

small distance between the cameras in the endoscope, the

disparity interval is very narrow. When only using pixel pre-

cision, the reconstructed point cloud would consist of

FIG. 3. Comparison between the structure of the CPU and GPU version of the HRM: (a) CPU HRM structure; (b) CPU HRM recursion over whole image; (c) GPU

HRM structure; and (d) GPU HRM recursion over overlapping sub images.
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separated layers which have a distance of several millimetres

between them.

In addition, simple specular highlight detection with in-

tensity and saturation thresholds is being performed. For

specular highlight pixels, a new disparity value is chosen by

taking the disparity of the previous time step and weighting

it in relation to the difference between the disparity of the

previous and the current time step from the horizontal and

vertical neighbor.

II.B.2. Hybrid recursive matching (GPU version)

We also implemented the correspondence analysis as well

as the other steps of the approach on the GPU in order to bene-

fit from the high degree of parallelism. When porting the

HRM algorithm to the GPU, the recursive structure makes par-

allelization difficult. In order to be efficient, an algorithm on

the GPU should consist of at least several hundred independent

threads. Therefore, the HRM algorithm has to be restructured.

The idea is to divide the image into a large number of over-

lapping sub images and to recursively generate a disparity

image for each sub image before fusing them [Fig. 3(d)]. The

overlapping does not result in memory conflicts, in which

threads try to write to the same memory location, because the

calculation in each sub image is synchronized to the other

sub images. Some calculations for the whole image can still

be performed independently. In this way, the algorithm is

separated into a global disparity candidate step that processes

the whole image in parallel and the sub image block recur-

sion step, in which each sub image is processed independ-

ently [Fig. 3(c)].

With the given disparity images of the previous time step,

we first calculate the similarity errors of the temporal dispar-

ity candidates. This can be done for each pixel independently

using a large amount of threads (153 600 threads for two

images with image resolution of 320� 240). In order to

improve the performance, the pixel recursion step is also

included in the global disparity candidate step. As opposed

to the CPU version which uses the winner of the block recur-

sion step, it uses the temporal candidate to calculate a second

disparity candidate and its similarity error for each pixel.

The sub image block recursion step uses either the tempo-

ral candidate or the pixel recursion candidate, depending on

their similarity errors, as input. For each pixel in a sub image,

a vertical and horizontal candidate is now calculated as it is

done in the CPU version and is then compared to the input

value. In contrast to the CPU version, there is no pixel recur-

sion in the sub image block recursion step by default. Only if

there is no temporal candidate, e.g., in the first image of the

sequence, or if the temporal candidates are unreliable due to

large image changes, pixel recursion can be called upon in

this step to compute another candidate. The overlapping of

the sub images ensures a smooth fusion between them. Dis-

parities are propagated into other image parts, which leads to

a reduction in mismatches at the edges of the sub images

where none or only one spatial candidate is known. This step

is the bottle neck of the GPU HRM. The number of threads is

strongly reduced (768 threads with two 320� 240 images as

input). Due to the increase in the number of usable threads

when using higher image resolutions, it is still faster than the

CPU version. The loss of the global recursive structure can

also lead to the effect that in large regions with homogeneous

textures, the disparity is not well distributed, which in turn

reduces the quality of the disparity image.

Specular pixels are detected and corrected as they are in

the CPU version. The difference is that this happens after the

HRM step whereas in the CPU version, they are corrected dur-

ing the block recursion step. In this way, the correction is

fully parallelized.

In both versions, interpolation can optionally be per-

formed to speed up the process. In the sub image block

recursion step of the GPU version, every other row can be

interpolated using the calculated neighboring disparities. In

the CPU version, every other row and every other second col-

umn of the image can be interpolated.

II.C. Disparity correction

The correspondence analysis step still produces mis-

matches in regions without texture or near occluded areas,

which have to be corrected. The detection of these mis-

matches is performed via a double consistency check. An

outline of the CPU disparity correction is described by Röhl

et al.20

The GPU consistency check uses the same correction meth-

ods as its CPU counterpart, however, it combines them differ-

ently (Fig. 4). At first, the right disparity image is corrected.

The result is used to correct the left disparity image. Each

correction is separated into two steps. In the first step, infor-

mation from the other image of the stereo pair is used to

FIG. 4. GPU consistency check and disparity correction procedure.
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correct mismatches. The idea is to examine, whether the dis-

parities in the other image are smooth and stable in that

region and if their similarity error from the HRM step is

smaller. In that case, they are regarded as dependable. If this

is not the case, information from the same image is used. A

simple interpolation using the four neighboring disparities is

applied if their values are similar. The procedure removes

single outliers in the disparity image. If the neighboring dis-

parities differ too much, more complex median filtering over

a larger neighborhood is used to obtain a new value.

Porting the median filter to the GPU is challenging.

Although the median can be calculated independently for

each pixel by utilizing a defined neighborhood, standard

variants of the filter that find the median by sorting this

neighborhood are inefficient due to the high amount of

memory accesses. In order to reduce them, the idea is to ap-

proximate the median without explicitly sorting the neigh-

borhood by using a histogram search that works for floating

point numbers. Given a neighborhood N, we first calculate

the width of the histogram bins by using a predefined histo-

gram size and determining the smallest and largest value of

N. For each bin, the number of values of N which would

fall into this bin are computed. We use this information to

build a cumulative histogram of N. The median is located

in the first bin of the cumulative histogram whose value

equals or exceeds half the size of N. We search through N

again to determine all values of N which would fall into

this bin. If it is only one value, the exact median is found.

Otherwise, we compute their arithmetic average to get an

approximated median.

II.D. Bilateral disparity smoothing

Without smoothing, the obtained disparity image is still

noisy. This is especially critical when disparity values with

subpixel precision are needed. Traditional smoothing filters

do not preserve edges, which reduces the level of detail of

the surface. To prevent that, we use the bilateral filter.21,32

This filter calculates a new value for each pixel depending

on the weighted average of neighboring pixel values. The

idea is to weight the influence of a neighboring pixel not

only by its spatial distance but also by its pixel value similar-

ity in order to reduce the influence of pixels which are sepa-

rated by a disparity discontinuity.

Typical applications of this filter are noise reduction in

images, tone mapping or mesh smoothing. It is straightfor-

ward to use this filter on disparity images, since the pixel

values encode the distance of a 3D point to the camera

reconstructed from the corresponding points. Hereby, the

disparity image is implicitly separated into regions which

have either the same or a slightly changing distance to the

camera. The filter only smoothes in these regions; disconti-

nuities are preserved. The smoothing is also beneficial to the

correspondence analysis in the following time step, as it

improves the quality of the temporal candidate in these

regions. The bilateral filter is implemented as an approxi-

mate version on the CPU (Ref. 32) and as an exact version on

the GPU.

II.E. Point cloud reconstruction, smoothing and
meshing

The camera calibration and the corrected and smoothed

disparity image are used to calculate the 3D coordinates of

the image points. This is realized by a standard triangulation

method, which calculates the 3D point for each pixel inde-

pendently. A GPU implementation is straightforward. The

same mismatch detection as in the disparity correction step

is used to identify any remaining mismatches. These points

are not reconstructed. In addition, 3D points that violate the

ordering constraint from the disparity image are also deleted

from the point cloud. In this way, points from faulty dispar-

ities are effectively filtered.

In order to further smooth the point cloud, we applied the

Total Least Square method presented by Hoppe et al.34 and

implemented it on the CPU and the GPU.21 Here, for each

point, a tangent plane is calculated from its neighborhood

using the least squares method. The tangent plane normal

vector serves as an approximation the real surface normal

and can be used to describe the shape of the surface. It can

serve as additional feature that can be used in surface regis-

tration.35 In order to further smooth the point cloud, the nor-

mal of each point is used to project this point into the

calculated tangent plane.

It is possible to quickly generate a surface mesh from the

point cloud without searching for the nearest neighbors of a

point. For meshing, we exploit the implicit alignment of the

pixels in the image. The neighbors of a pixel can be identi-

fied precisely, without explicitly calculating them. When

connecting points to triangles, we only have to ensure that

the 3D points do not violate the ordering constraint, meaning

that the neighbors in the image and the reconstructed point

cloud have to be the same. If there are holes in the point

cloud, we identify the neighboring points by searching from

each missing point in horizontal direction, until after a valid

point is found. Finally, the resulting point cloud or mesh is

rendered using standard methods from VTK.36

II.F. Hybrid CPU-GPU algorithm

While the CPU implementation of the approach is too slow

when using higher image resolutions than 320� 240, the GPU

implementation is not as robust because disparity informa-

tion is only propagated within the sub images. Because of

the modular structure of the workflow and the short time for

copy instructions between CPU and GPU, GPU, and CPU parts

can be combined arbitrarily. Thus, we developed a hybrid

CPU-GPU algorithm, which is faster than the CPU implementa-

tion and more robust both implementations (Fig. 5). To

achieve this, the idea is to take advantage of the temporal

character of the HRM. We can improve the robustness by

iterating multiple times over the same image. In addition, we

want to combine the advantages of both versions. The CPU

HRM works better on low-textured images because it can

propagate disparities over larger parts of the images. Its GPU

counterpart can only propagate disparities over one sub

image, but it runs faster, especially on higher image

resolutions.

1637 Röhl et al.: GPU-enhanced surface reconstruction from stereo endoscopic images 1637
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We interconnect CPU and GPU by first calculating the HRM

and consistency check on the CPU, using half resolution

images. To speed up the process, full interpolation is used.

We also use the fact that the output of the HRM algorithm

slightly differs depending on the direction of the iteration of

the image. We therefore calculate two left and two right dis-

parity images and merge the disparities by choosing the dis-

parity value with the smaller similarity error. Afterward, GPU

bilateral filtering is called upon to smooth the disparity

images.

The resulting low-resolution disparity images are scaled

up by using bilinear interpolation. Then, mismatches are fil-

tered using a consistency check. The remaining disparities

serve as first input for the GPU workflow. Furthermore, we

use the disparity images from the previous time step as sec-

ond input. In this way, the global disparity calculation step is

extended to calculate a similarity error for both candidates.

The candidate with the smaller error is chosen.

Subsequently, correspondence correction, bilateral filter-

ing, 3D reconstruction and point cloud smoothing are per-

formed on the GPU. The output of the GPU bilateral filter is

scaled down and used as input during the following time

step. The hybrid CPU-GPU version has the advantage that it

produces more stable point clouds due to the repeated proc-

essing of the images and the noise reduction in lower image

resolutions. It is also faster than the CPU workflow.

III. RESULTS

We evaluated the CPU, the GPU, and the hybrid CPU-GPU

workflow on virtual and on in vivo images (see Video 1).

The main focus of the evaluation was on run-time, accuracy

and robustness against low-textured areas, large view point

changes, noise and errors due to a poor camera calibration. It

extends previous evaluations concerning the impact of tem-

poral information and the use of bilateral post process-

ing.20,21 We decided against an evaluation on standard data

sets, such as the Middlebury evaluation, because they only

use single image pairs instead of image sequences and the

images have no medical background with typical character-

istics of endoscopic images.

The algorithms were implemented in C=Cþþ using Qt,37

VTK from Kitware and IVT, a vision library.29 The GPU

implementation was done using CUDA from NVIDIA. The work-

flow was integrated into the MediAssist system, a computer

assistance system for minimally invasive surgery that builds

upon the IGSTK framework.38,39

For our experiments, we developed a simulation environ-

ment, where we capture images from a textured 3D liver

model with a simulated stereo camera and compare the

reconstructed point cloud with the known 3D surface

(Fig. 6). We also evaluated stereo endoscopic images of a sil-

icone phantom with ground truth point clouds.13,40 In addi-

tion, we used images from three stereo endoscopes, a PAL

endoscope (max. resolution 720� 576) and a prototype HD-

endoscope (1920� 1080) from FA WOLF as well as the

endoscope from the daVinci system.

We also compared the results of our three algorithms to a

variant of a CPU semiglobal block matching stereo recon-

struction algorithm41 and a GPU constant-space belief propa-

gation algorithm.42 Both algorithms are implemented in the

OPENCV library.43 The CPU and the GPU OPENCV algorithm pa-

rameters are taken from the sample file in the library. Both

OPENCV algorithms have their own disparity correction. They

only reconstruct one disparity image, so there is no addi-

tional validity check in the 3D reconstruction step.

In the following paragraphs, we use as abbreviations CPU

for our CPU version of the workflow, GPU for the GPU version

and CPU-GPU for our hybrid workflow. The CPU semiglobal

block matching algorithm is defined as CPU-OPENCV, the GPU

constant-space belief propagation algorithm as GPU-OPENCV.

III.A. Evaluation on virtual image sequences

To evaluate the accuracy and robustness of the surface

reconstruction algorithms, we created a test setting where we

FIG. 5. Hybrid CPU-GPU algorithm workflow.

FIG. 6. Simulation environment: (a) image from virtual camera; (b) disparity

image; (c) overlay of virtual liver with reconstructed surface; and (d) side view

of reconstructed surface. [URL: http://dx.doi.org/10.1118/1.3681017.1]
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capture images from a virtual liver model using a simulated

stereo endoscope with a known calibration. Thus, we can

compare a reconstructed point cloud directly with the liver

model without requiring a registration. We are also able to

reconstruct ground truth disparity images, which can be

compared to ours. Errors in accuracy due to poor camera cal-

ibration, an inaccurate registration or image noise can be

controlled or totally omitted.

In our evaluation, we used nine image sequences which

consist of three test settings with three differently textured

virtual liver models (Fig. 7). In each test setting, the distance

between the virtual endoscope and the liver is approximately

5 cm. In setting 1 (circle), a 360� rotation around the liver

with a step size of 5� is performed. Here, we can assess how

our three versions for surface reconstruction react when the

endoscope is moving sideways. In this case, temporal dispar-

ities can still be reliable in some parts of the image if the dis-

tance of the camera to the surface changes only slightly. In

setting 2 (zoom), the camera zooms in and out on the same

spot at the liver to see how the versions work with images

where the distance and, hence, the disparity values rapidly

change. The step size is 2 mm; the maximum zoom is

40 mm. Here, we investigate how the versions perform with-

out any valid temporal information. In setting 3 (deform),

only a certain area of the image is deformed whereas the

endoscope has a fixed position. This shows how the three

versions can cope with local deformations. In this case, tem-

poral information is valid for a large part of the image. Dis-

parity changes arise only in the deformation area. The first

two textures are taken off images from different soft tissue.

The third variant is an untextured liver. The different light-

ing of the pixels is the only viable information in order to

distinguish between them. The untextured variant is the most

challenging one. Here, the impact of homogeneous or surfa-

ces without texture on the algorithm is being investigated.

We measured the accuracy and robustness of our five

reconstruction algorithms using these image sequences. We

also evaluated the robustness to image noise and camera cal-

ibration errors.

During the evaluation we used the parameters from

Table I. We looked at the disparity difference between the

ground truth disparities and the disparities reconstructed in

our versions. Here, pixels at the image margin (10 pixels

wide) and pixels that cannot be seen in the other image are

not considered. We compared the mean error using all

remaining disparities or, alternatively, only values that result

FIG. 7. Selected frames with different textures: CPU, GPU, CPU-GPU, and both OPENCV surface reconstruction disparity images and disparity difference (>1 pixel)

to ground truth disparities.
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in a reconstructed 3D point. We also compared the mean dis-

tance between the reconstructed and the ground truth point

cloud. Therefore, we calculated the distance between a

reconstructed 3D point and a plane described by the ground

truth 3D point and its ground truth normal. Finally, we eval-

uated the number of reconstructed points for each version

and image sequence. In order to calculate the percentage, we

divided the number of reconstructed points by the width and

height of the image.

The results in Table II show that the CPU-GPU version per-

forms best in most of the cases. The GPU version performs

significantly poorer on sequences with large areas without

texture and large image changes such as the circle sequence.

This is due to the limited disparity propagation and the sepa-

ration of the pixel recursion step from the recursive parts of

the algorithm which hampers the introduction of new dispar-

ities in large areas. But with enough texture or small image

changes, it works as well as the other versions.

While the difference between the CPU-GPU and the CPU ver-

sion while using the two textured livers is not significant, it

outperforms the CPU version particularly on the untextured

liver for the circle and zoom sequence. The mean distance

between the reconstructed point cloud and the liver surface

is down from 0.72 to 0.28 mm (a reduction by 61%) for the

zoom sequence and down from 2.81 to 0.39 mm (86%) for

the circle sequence. It also reconstructs more points (6% for

the circle and 9% for the zoom sequence) which implies that

more disparity mismatches are corrected.

In the zoom sequence using an untextured liver, both

OPENCV algorithms outperform the CPU-GPU version. The

mean distance for the CPU-OPENCV algorithm is reduced from

0.39 to 0.22 mm (reduction by 44%). The main reason for

this is that here temporal information is completely unreli-

able and can even impair the results. In all other sequences,

the CPU-GPU version is significantly more accurate, with a

mean distance reduction of about 51% compared to the CPU-

OPENCV and 60% compared to the GPU-OPENCV algorithm. It

also reconstructs about 12% more points than the CPU-OPENCV

algorithm, which in turn produces holes in the disparity

images (Fig. 7). However, the GPU-OPENCV algorithm always

reconstructs more points than the other algorithms.

Figure 7 also shows that the CPU-GPU version can cope

with disparity discontinuities. In the “circle” frame, the rear

part of the virtual liver is partially occluded. The approach

produces only some mismatches directly at the edge of the

occlusion. While using the CPU-GPU version, the mean dis-

tance is always below 0.6 mm and below 0.2 mm for sequen-

ces with a textured liver.

In addition, we investigated the influence of noise and cal-

ibration errors using stereo endoscopic images (Table III). In

the first experiment, the images were altered by adding zero-

centred Gaussian noise with variance r ¼ 10 to all colour

channels. To generate the noise, we used the polar form of

the Box-Muller transform.44 The CPU-GPU version always out-

performs the CPU and GPU version (at least 39% more accu-

rate), but its mean disparity error and the mean distance are

worse compared to the CPU-OPENCV algorithm. In the “circle”

sequence, the mean distance of the CPU-OPENCV algorithm is

about 35% better whereas the “deform” sequence shows an

increase in accuracy of about 8%. An easy way to improve

the results is to apply a 3� 3 Gaussian filter to the images.

Here, the impact of the noise is strongly reduced. This leads

to a performance comparable to the CPU-OPENCV algorithm

which does not benefit from the smoothing step. Also the

number of reconstructed points is about 10% higher. The

GPU-OPENCV algorithm always performs much poorer than the

CPU-GPU algorithm, however, it also strongly profits from

Gaussian smoothing. Its advantage is a significantly larger

number of reconstructed points (8% and 10%, respectively).

For the second experiment, we added a rectification error

of 0.5 and 1 pixels to the images. This means that the second

image is shifted vertically. Rectification errors are common

in endoscopic images and are caused by either a poor camera

calibration or by a not fully synchronized capturing of the

left and right image. As result, the disparity images are

noisier, but the overall mean distance error remains in an ac-

ceptable range of well under 0.5 mm for all algorithms. The

CPU-GPU algorithm outperforms the CPU algorithm here as

well. The CPU-OPENCV algorithm performs slightly better for a

rectification error of 1 pixel, but fewer points are recon-

structed. Most points are reconstructed by the GPU-OPENCV

algorithm, yet its mean distance error is the worst of all.

To summarize, most errors arise with the untextured liver

and for noisy sequences. Here, the GPU version produces

unacceptable noisy point clouds. In sequences with a well

textured liver and no or small disturbances, its surface

reconstruction is always as good as in the other versions. The

CPU-GPU version performs better than the GPU and CPU version,

especially in experiments with the untextured liver or image

disturbances. The overall mean distance error for the CPU-GPU

version remains permanently under 1 mm. It is more accurate

than both OPENCV algorithms and almost as robust as the

CPU-OPENCV algorithm toward image disturbances. Only the

zoom sequence with an untextured model delivers signifi-

cantly poorer results due to the lack of valid temporal

information.

III.B. Evaluation on stereo endoscopic images

III.B.1. Image sequences of a silicone phantom

In this evaluation, we used two sequences (Heart 1 with

2426 and Heart 2 with 3388 image pairs) of a silicone phan-

tom with an image resolution of 320� 288. They can be

TABLE I. Parameterization of the evaluation with virtual image sequences.

Parameter Value

HRM block size 7� 7

Correspondence correction threshold 0.5

GPU HRM sub image size 20� 16

GPU HRM overlapping in x and y 4 Pixel

Bilateral filter neighborhood size 17� 17

Bilateral filter spatial parameter rs 8

Bilateral filter range parameter rr 1.5

Least Squares neighborhood size 7� 7

3D reconstruction image margin 10 pixel
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TABLE II. Evaluation of the CPU, GPU, CPU-GPU, the CPU- and GPU-OPENCV surface reconstruction on nine image sequences from the simulation environment; best results in bold print.

Circle Zoom Deform

Evaluation criteria Algorithm Pixel used Tex 1 Tex 2 Tex 3 Tex 1 Tex 2 Tex 3 Tex 1 Tex 2 Tex 3

% of pixel with disparity difference >1 pixel CPU all 1.1 1.1 23.6 0.8 0.7 25.5 0.4 0.4 2.9

GPU 4.9 2.5 49.7 1.3 0.7 56.0 0.3 0.3 16.0

CPU-GPU 0.6 0.7 8.7 0.5 0.4 10.4 0.3 0.2 1.4

Mean disparity error between reconstructed

and ground truth disparity image (pixels)

CPU all 0.24 0.25 1.77 0.22 0.21 2.05 0.21 0.21 0.33

GPU 0.84 0.53 12.00 0.25 0.21 15.1 0.20 0.21 5.93

CPU-GPU 0.18 0.19 0.53 0.18 0.17 1.03 0.14 0.13 0.29

CPU from reconstructed points 0.11 0.10 1.24 0.09 0.07 2.04 0.11 0.10 0.23

GPU 0.37 0.17 8.17 0.10 0.08 13.9 0.12 0.13 3.50

CPU-GPU 0.10 0.09 0.37 0.09 0.08 0.56 0.08 0.08 0.15

CPU-OPENCV 0.40 0.31 0.54 0.18 0.14 0.30 0.21 0.16 0.34

GPU-OPENCV 0.29 0.29 0.42 0.26 0.27 0.34 0.26 0.26 0.34

Mean distance of reconstructed points to virtual liver model (mm) CPU from reconstructed points 0.08 0.08 0.72 0.06 0.06 2.81 0.08 0.07 0.16

GPU 0.16 0.10 4.08 0.08 0.06 5.70 0.08 0.08 1.33

CPU-GPU 0.07 0.07 0.28 0.07 0.06 0.39 0.06 0.05 0.11

CPU-OPENCV 0.23 0.18 0.45 0.12 0.09 0.22 0.14 0.11 0.23

GPU-OPENCV 0.21 0.23 0.45 0.18 0.19 0.27 0.14 0.16 0.21

Number of reconstructed points (%) CPU 81.7 81.9 75.8 85.1 85.2 73.6 85.8 85.8 85.7

GPU 78.6 80.3 64.1 84.5 84.8 58.0 85.8 85.6 74.4

CPU-GPU 82.4 82.6 81.7 85.3 85.3 82.5 85.8 85.7 85.8

CPU-OPENCV 69.7 70.0 58.7 73.6 73.7 61.1 73.6 73.7 70.0

GPU-OPENCV 84.0 84.1 83.2 87.6 87.6 86.5 88.2 88.4 87.6
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acquired on the VIP Laparoscopic=Endoscopic Video Data-

set page.13,40,45 Ground truth data are obtained by using CT

data which are manually registered to the endoscopic

images. Each sequence has 20 ground truth point clouds

associated with it. Each point cloud is used for multiple

image pairs. We used the CPU, the CPU-GPU, and both OPENCV

workflows to reconstruct point clouds from the images. For

each sequence, we measured the mean distance error

between the reconstructed and the ground truth point cloud.

We also calculated the mean distance error separately for

each ground truth data set (Fig. 8). Here, the overall error is

influenced by our disparity calculation, but also by errors in

rectification and 3D reconstruction, due to inaccuracies in

the camera calibration. Additional errors arise due to the

manual registration.

Results in Table IV show that the mean distance is signifi-

cantly larger than the error from the evaluation using the vir-

tual simulation environment. This is explained by the

additional error sources introduced here. The large differ-

ence in error between the best and the worst ground truth

data set also implies that especially the manual registration

causes a significant part of the total error. Also, the rectifica-

tion error changes from image pair to image pair. Interest-

ingly, the CPU-GPU version performs better than the CPU-

OPENCV algorithm on sequence “Heart 1” (mean distance

error about 29% reduced), but worse on sequence “Heart 2”

(mean distance error about 7% increased). The best data sets

are also not the same for the algorithms, which indicates that

they perform differently depending on the images. Again,

the CPU-OPENCV algorithm reconstructs fewer points than the

TABLE III. Errors due to two error sources: Gaussian noise and poorly rectified images.

Error source Evaluation criteria Algorithm Deform Tex 1 Circle Tex 2

Noise variance Noise variance r ¼ 10 Mean distance (mm) CPU 0.66 1.39

GPU 0.83 1.94

CPU-GPU 0.40 0.46

CPU-OPENCV 0.37 0.30

GPU-OPENCV 0.65 1.80

Noise variance r ¼ 10

(with Gaussian smoothing)

Mean distance (mm) CPU 0.37 0.51

GPU 0.46 0.77

CPU-GPU 0.31 0.32

CPU-OPENCV 0.34 0.33

GPU-OPENCV 0.38 0.58

Reconstructed points (%) CPU 80.4 74.0

GPU 75.9 67.1

CPU-GPU 79.0 78.1

CPU-OPENCV 69.9 65.4

GPU-OPENCV 87.5 83.5

Rectification error 0.5 pixel Mean distance (mm) CPU 0.19 0.19

GPU 0.20 0.22

CPU-GPU 0.14 0.17

CPU-OPENCV 0.14 0.21

GPU-OPENCV 0.22 0.30

1 pixel Mean distance (mm) CPU 0.30 0.39

GPU 0.32 0.46

CPU-GPU 0.27 0.34

CPU-OPENCV 0.20 0.29

GPU-OPENCV 0.38 0.48

Reconstructed points (%) CPU 85.6 80.9

GPU 85.1 76.3

CPU-GPU 85.5 81.9

CPU-OPENCV 73.6 69.6

GPU-OPENCV 88.1 83.5

FIG. 8. Heart 1 sequence: (a) frame 5; (b) disparity image; (c) Reconstructed

point cloud; and (d) Color-coded distance map (from green (error¼ 0 mm)

to red (error¼ 2 mm)) between reconstructed surface and ground truth:

blue¼ no comparable points found.
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CPU-GPU algorithm. The difference between the CPU and the

CPU-GPU version is not significant, which indicates that when

using a low image resolution, the robustness of the two ver-

sions is comparable. The mean distance error from the GPU-

OPENCV algorithm is significantly poorer in both sequences.

Overall, the mean distance stays in a range of well under

2 mm for 16 of the 20 data sets in sequence “Heart 1” and 14

of 20 data sets in sequence “Heart 2”. Figure 8 also shows

that the approach can cope with image artefacts, such as the

specular reflections in the middle of the image.

III.B.2. Image sequences from daVinci interventions

Due to the lack of intraoperative ground truth data, we

could only qualitatively evaluate in vivo images. In the

image sequences, we especially looked at the impact of

image disturbances caused by specular reflections, smoke or

interlacing artefacts, as well as the overall noisiness of the

disparity images and the reconstructed point clouds.

When using images from daVinci interventions (Fig. 1),

the correspondence analysis of the CPU-GPU algorithm pro-

duces smooth disparity images. Most mismatches arise at the

image margin, an area that is less important for surface regis-

tration. Most areas that are not reconstructed are small. Arte-

facts mainly arise when the images are filled with smoke,

which is caused by tissue ablation, or suffer from interlacing

effects, due to fast movements of objects. However, they are

corrected in the next time steps, as the algorithm optimizes

its disparity image over time. The disparity of specular pix-

els can be reconstructed quite well from the spatial and tem-

poral neighborhood, as long as the specular reflection

remains sufficiently small. Only large specularities lead to

holes in the reconstructed surface. Occluded areas can be

reconstructed by propagating the disparity values from

neighboring nonoccluded areas into them. Although the

baseline between the cameras is small, the 3D points in the

point cloud are smoothly distributed.

The CPU-OPENCV algorithm also produces smooth disparity

images, but there are more large holes or areas with smooth,

but inaccurate disparity values in the images. When smoke is

present, the images of the CPU-OPENCV algorithm are noisier

than the images resulting from the CPU-GPU algorithm. It also

has problems reconstructing regions with very homogeneous

texture, e.g., regions covered with blood. In these cases, the

temporal candidate of the HRM and its recursive structure is

especially beneficial. The CPU-OPENCV algorithm also has

more problems reconstructing dark areas, but it deals with

specularities quite similarly to the CPU-GPU algorithm. Edges

at object boundaries, e.g., instruments, are reconstructed

more precisely by the CPU-OPENCV algorithm. Here, the recon-

struction of the CPU-GPU version displays a larger number of

frayed edges.

The GPU-OPENCV algorithm is less robust than the CPU-GPU

algorithm. Homogeneous areas and the border area of the

images are especially problematic. It is also more sensitive

to smoke or blood. Like its CPU counterpart, it is more accu-

rate near object boundaries.

III.C. Runtime evaluation

The runtime was evaluated using sequences with resolu-

tions of 320� 240, 640� 480, and 960� 540 (Table V). We

only used the first field of the images of the HD-endoscope

to avoid interlacing, which has a more severe impact on the

surface reconstruction with a higher image resolution. We

tested the performance on an Intel i7 930 CPU with four cores

and 12 GB RAM and an NVIDIA Tesla C 2070 graphic card.

The CPU version of the algorithm is parallelized using OPENMP

to capitalize on the multicore architecture. All versions use

the same parameters. Preprocessing and visualization time is

not taken into account. As both OPENCV algorithms only per-

form disparity calculation, we use the GPU implementation of

the 3D reconstruction methods for surface reconstruction.

The GPU implementation always outperforms the CPU

implementation of the algorithms. Especially the GPU bilat-

eral filter calculation is improved upon compared to the CPU

version (about 30 times faster when using a resolution of

640� 480). The GPU HRM shows the least acceleration due

to its recursive elements, but is still faster than its CPU coun-

terpart. The disparity correction time varies a great deal. The

speed depends on the number of mismatches found after the

HRM step. This also explains why the disparity correction of

the hybrid CPU-GPU algorithm is faster than its GPU counter-

part. Here, some mismatches are already corrected in the CPU

step. The disparity refinement step, which includes bilateral

filtering, is significantly faster on the GPU than on the CPU.

The hybrid CPU-GPU algorithm speed was evaluated on

640� 480 and 960� 540 images. For lower image resolu-

tions, the CPU and GPU versions are directly combined without

reducing the image resolution for the CPU step. The addi-

tional calculation of the bisected images on the CPU costs a

bit of performance, but it is still much faster than the CPU ver-

sion. The correspondence analysis, disparity correction and

TABLE IV. Mean distance between reconstructed and ground truth point cloud for two image sequences of the silicone phantom and the CPU version, the CPU-

GPU version and both OPENCV algorithms.

Heart 1 mean distance error (mm) Heart 2 mean distance error (mm)

Ground truth data sets used CPU CPU-GPU CPU-OPENCV GPU-OPENCV CPU CPU-GPU CPU-OPENCV GPU-OPENCV

All ground truth data sets 1.55 1.45 1.91 3.29 1.61 1.64 1.53 2.70

Best data set (ground truth data set number) 0.80 (12) 0.77 (12) 1.09 (11) 2.40 (15) 0.84 (12) 0.75 (15) 0.82 (16) 1.97(15)

Worst data set (ground truth number) 2.91 (5) 2.62 (5) 3.50 (5) 4.33 (5) 2.86 (6) 2.96 (6) 2.70 (6) 3.60(8)

Reconstructed points (%) 66.2 65.7 60.8 77.3 66.5 69.8 58.0 69.6
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refinement steps of the GPU and the hybrid CPU-GPU algo-

rithms are always faster than both OPENCV algorithms.

IV. DISCUSSION

In this paper, we presented an approach toward recon-

struction of a dense surface from stereo endoscopic image

sequences in real-time. It depicts accurately the constantly

deforming environment and can be used to build an intrao-

perative model of the surgical site, which can be registered to

preoperative planning data. The correspondence analysis is

able to produce a dense disparity image by finding corre-

sponding point pairs in a recursive process, while using infor-

mation from the spatial and temporal neighborhood. The

disparity correction detects mismatches in both disparity

images and corrects them using several correction methods

depending upon the characteristic properties of their sur-

roundings. Bilateral filtering is used to refine the disparity

images. The filter smoothes the disparity images efficiently,

while preserving edges. In the 3D reconstruction step,

remaining outliers are filtered to get a more robust point

cloud. This point cloud is then smoothed and normal vectors

for each point are extracted using the Total Least Squares

normal calculation method. The result is a filtered and

smoothed point cloud with surface normals for each point,

which closely describes the original surface and can be used

for surface registration.

We focused on the GPU implementation of the algorithms,

in order to get a system that works in real-time when using

higher image resolutions. Thus, we presented a solution to

transfer the recursive correspondence analysis method to the

GPU. We also gave a detailed explanation of our GPU version

of the disparity correction. Finally, we presented a new

hybrid CPU-GPU algorithm to perform surface reconstruction,

which benefits from the modular structure of our workflow.

We compared the CPU, the GPU, and the hybrid CPU-GPU

version of the surface reconstruction with algorithms from

the literature, which are implemented in the OPENCV library.

The GPU version works in real-time for an image resolution

of 640� 480, but is sensitive to large areas without texture,

image noise or large movements in the images. The CPU ver-

sion is more robust, but is considerably slower. This fact

also reduces its performance quality because as the update

rate slows, temporal information will become more and

more unreliable. The hybrid CPU-GPU version combines their

advantages. It is more robust than the CPU version and only

slightly slower than the GPU version. It shows significantly

better results especially for low-textured areas. The reason

for this is that each image is now processed twice, which

improves upon the outcome due to its temporal character. Its

robustness is comparable to the CPU -based OPENCV algorithm,

but it has a higher accuracy, reconstructs more points and is

significantly faster. The GPU-based OPENCV algorithm is less

robust and less accurate. Overall, the hybrid CPU-GPU version

reconstructs the surface down to submillimeter accuracy in

real-time. It is robust toward regions without texture, fast

and large movements in the images, specular reflections and

errors due to a poor image rectification.

Future work includes the improvement of the approach

near discontinuities and occlusions where disparities tend to

leak out in neighboring regions without texture. While this

effect can be reduced by repeating the method on the same

images, it is still not always satisfactory. We also have to be

able to separate objects from the background, e.g., instru-

ments, in order to remove them from the point cloud. For

this, we need robust instrument detection. In addition, image

artifacts caused by smoke or blood have to be detected. We

also have to implement efficient solutions to merge surface

models from different time steps.

The main goal for the future is to successfully register the

reconstructed surface with a preoperative model from the

surgical site. Therefore, further examination on nonrigid sur-

face registration methods is required.
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TABLE V. Run time comparison in ms between the CPU, the GPU, and the CPU-GPU version of the algorithms as well as both OPENCV correspondence analysis algo-

rithms for left and right image with resolution of 320� 240, 640� 480, and 960� 540.

320� 240 640� 480 960� 540

Algorithm CPU GPU CPU-OPEN-CV GPU-OPEN-CV CPU GPU CPU-GPU CPU-OPEN-CV GPU-OPEN-CV CPU GPU CPU-GPU CPU-OPEN-CV GPU-OPEN-CV

Correspond. analysis (ms) �17 9 �30 �41 �85 25 25 �225 �125 �140 34 34 �340 �200

Disp. correction (ms) 5-10 2 �50 7 5 �90 10 7

Disp. refinement (ms) 14 2 �170 6 6 �200 10 10

3D reconstr. (ms) 2 1 1 1 7 1 1 1 1 12 2 2 2 2

Least squares (ms) 12 1 1 4 �35 4 4 4 4 �75 14 14 14 14

Copy from and to GPU (ms) x 1 1 1 x 2 3 2 1 x 3 4 3 1

CPU part of CPU-GPU (ms) x x x x x x 26 x x x x 37 x x

Overall (fps) 19 60 30 22 3 21 14 4.5 7.5 1.5 13 9 2.5 4.5
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