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Imaging biomarkers for Alzheimer's disease are desirable for improved diagnosis andmonitoring, aswell as drug
discovery. Automated image-based classification of individual patients could provide valuable diagnostic
support for clinicians, when considered alongside cognitive assessment scores. We investigate the value of com-
bining cross-sectional and longitudinal multi-region FDG-PET information for classification, using clinical and
imaging data from theAlzheimer's Disease Neuroimaging Initiative.Whole-brain segmentations into 83 anatom-
ically defined regions were automatically generated for baseline and 12-month FDG-PET images. Regional signal
intensities were extracted at each timepoint, as well as changes in signal intensity over the follow-up period.
Features were provided to a support vector machine classifier. By combining 12-month signal intensities and
changes over 12 months, we achieve significantly increased classification performance compared with using
any of the three feature sets independently. Based on this combined feature set, we report classification accura-
cies of 88% between patients with Alzheimer's disease and elderly healthy controls, and 65% between patients
with stable mild cognitive impairment and those who subsequently progressed to Alzheimer's disease. We
demonstrate that information extracted from serial FDG-PET through regional analysis can be used to achieve
state-of-the-art classification of diagnostic groups in a realistic multi-centre setting. This finding may be usefully
applied in the diagnosis of Alzheimer's disease, predicting disease course in individuals with mild cognitive
impairment, and in the selection of participants for clinical trials.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD) is the most common cause of dementia in
the elderly, with a worldwide prevalence of 26.6 million reported in
2006, which is expected to rise above 100 million by 2050 (Brookmeyer
et al., 2007). Drug development is a major research focus, but at present
no treatment is able to either reduce the risk of developing AD, or delay
its onset and progression. Any disease-modifying or causal therapy
would likely be of greatest benefit to pre-symptomatic patients, and
those at increased risk of developing AD. Patients with amnestic mild
cognitive impairment (MCI) are hence of particular interest for clinical
trials.
btained from the Alzheimer's
tp://www.loni.ucla.edu/ADNI).
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te in analysis or writing of this
ilable at http://www.loni.ucla.

rights reserved.
Consensus diagnostic criteria for established AD are up to 90%
accurate when validated against neuropathological gold standards
(Ranginwala et al., 2008). There are, however, several significant
challenges to be addressed. These include pre-symptomatic diagnosis,
differential diagnosis and the assessment and prediction of progression.
Population stratification is also important, to allow recruitment of
appropriate participants for clinical trials, and targeting of patients for
whom newly developed treatments may be most effective. Recently
published revisions to the consensus criteria aim to incorporate
advances in AD research, such as the diagnostic and prognostic value
of biochemical and neuroimaging biomarkers (Albert et al., 2011;
McKhann et al., 2011; Sperling et al., 2011). The Alzheimer's Disease
Neuroimaging Initiative (ADNI) is a valuable resource for related
investigations, providing longitudinal clinical and imaging data from
patients with AD and MCI, as well as healthy controls (HC).

Functional imaging with FDG-PET is one of several neuroimaging
modalities of interest in AD. Numerous studies (for example, Langbaum
et al., 2009; Mosconi et al., 2005, 2008; Nestor et al., 2003) have shown
that both MCI and AD are associated with significant reductions in the
cerebral metabolic rate of glucose in brain regions preferentially affected

http://dx.doi.org/10.1016/j.neuroimage.2011.12.071
mailto:krg03@imperial.ac.uk
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf
http://dx.doi.org/10.1016/j.neuroimage.2011.12.071
http://www.sciencedirect.com/science/journal/10538119


222 K.R. Gray et al. / NeuroImage 60 (2012) 221–229
by the disease. AD patients typically display reductions of greater
magnitude and spatial extent. Reducedmetabolic activity in ADpatients
can predict both their cognitive decline and histopathological diagnosis
(Hoffman et al., 2000; Minoshima et al., 2001; Silverman et al., 2001),
and in MCI patients it can predict their conversion to AD (Anchisi
et al., 2005; Mosconi et al., 2004). Serial FDG-PET scans over ten years
can identify declining hippocampal metabolism as healthy individuals
progress to AD (de Leon et al., 2001). FDG-PET is mentioned in the
revised AD diagnostic criteria (Albert et al., 2011; McKhann et al.,
2011; Sperling et al., 2011) as a potentially useful tool for early diagno-
sis and monitoring of disease progression. However, as with other
neuroimaging and biochemical biomarkers, its use is recommended
for research, rather than standard clinical practice.

Automated image-based classification of individual patients could
provide valuable diagnostic support for clinicians, when considered
alongside cognitive assessment scores. The ADNI study provides an
ideal dataset for classification, since it approximates a clinical popula-
tion due to its large size and diversity. Several recent studies have
performed image-based classification using cross-sectional ADNI FDG-
PET data. Hinrichs et al. (2009) use spatially augmented linear pro-
gramme boosting, based on voxel-wise features, to achieve a classifica-
tion accuracy of 84% between AD patients and HC. Haense et al. (2009)
apply a previously validated method (Herholz et al., 2002) in which a
global measure of image abnormality is provided by the sum of abnor-
mal t-values in predefined areas typically affected by AD. They report
83% sensitivity and 78% specificity between AD patients and HC follow-
ing the application of a preset t-sum threshold. Salas-Gonzalez et al.
(2010) apply a linear support vector machine (SVM) to voxel-wise
data which have undergone feature selection and dimensionality
reduction. They achieve accuracies of 87% between AD patients and
HC, and 83% between MCI patients and HC, using a two-fold cross-
validation strategy.

There aremanymore classification studies based on ADNI structural
MR imaging data. For example, a recent study (Cuingnet et al., 2011)
compares ten high-dimensional classification methods applied to 509
baselineADNI 1.5 TMR images. Twomethods use only the hippocampal
shape or volume, whilst the remainder are whole-brain approaches,
which use either cortical thickness measures, or voxel-wise tissue
class probabilities for grey matter, white matter and cerebrospinal
fluid (CSF). High accuracies in distinguishing AD patients from HC
(up to 81% sensitivity and 95% specificity) are reported for whole-
brain approaches. Four of the ten methods were able to distinguish
MCI patients who later progressed to AD (pMCI) from those who
remained stable (sMCI) over 18 months slightly more accurately than
a random classifier, although not significantly (p>0.05) so. For exam-
ple, one of the methods based on hippocampal volume achieved 62%
sensitivity and 69% specificity.

There is increasing interest in using multi-modality imaging and
non-imaging data for classification. For example, Zhang et al. (2011)
apply a kernel combination approach to cross-sectional FDG-PET and
MR imaging data and CSF biomarker measures. They report classifica-
tion accuracies of 93% between AD patients and HC, and 76% between
MCI patients and HC, when using all three modalities in combination.
These results are superior to those obtainedwhen using any onemodal-
ity independently. Hinrichs et al. (2011) have also investigated the
application of kernel combination methods, but to both cross-
sectional and longitudinal FDG-PET and MR imaging data, as well as
CSF biomarker measures, neuropsychological status examination
scores, and APOE genotype information. They, too, report that the use
of multi-modality data leads to superior classification performance
compared with that based on any individual modality. Their study
data included two FDG-PET and MR images for each subject, taken
approximately 24 months apart. They observed that longitudinal analy-
sis of the FDG-PET images (either voxel-wise temporal difference or
temporal ratio) performed relatively poorly in distinguishing AD
patients from HC, compared with the raw FDG-PET signal intensities
at either timepoint. They suggest that two-year changes in FDG-PET
signal intensity alone are not sufficient to identify AD with high accura-
cy, and these longitudinal data were therefore not incorporated into
their multi-modality classification experiments.

In contrast, Chen et al. (2010) report highly significant group differ-
ences between AD or MCI patients and HC in their longitudinal analysis
of 12-month metabolic declines in ADNI subjects. This suggests that
whilst longitudinal FDG-PET data alone may not be sufficient for classi-
fication, they may provide valuable complementary information which
can enhance the results achievable using cross-sectional FDG-PET. We
therefore investigate the value of combining cross-sectional and longi-
tudinal FDG-PET information for classification. We extract regional
features from baseline and 12-month follow-up FDG-PET images, and
investigate their combined use for image-based classification of the
ADNI participants. We present classification results for four clinically
relevant pairs of diagnostic groups (AD/HC, pMCI/HC, AD/sMCI, pMCI/
sMCI), and also identify the regional features which best separate
these groups.

Materials and methods

Imaging data

Data used in the preparation of this article were obtained from the
ADNI database (http://www.loni.ucla.edu/ADNI). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies
and non-profit organisations, as a $60 million, five-year public-private
partnership. The primary goal of ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and
early AD. Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the
time and cost of clinical trials. The Principal Investigator of this initiative
is Michael W. Weiner, M.D., VA Medical Center and University of
California — San Francisco. ADNI is the result of efforts of many
co-investigators froma broad range of academic institutions and private
corporations, and subjects have been recruited fromover 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults,
ages 55 to 90, to participate in the research— approximately 200 cogni-
tively normal older individuals to be followed for three years, 400
people with MCI to be followed for three years, and 200 people with
early AD to be followed for two years. Further up-to-date information,
including detailed eligibility criteria, is available on the ADNI informa-
tion website (http://www.adni-info.org).

Baseline and 12-month follow-up FDG-PET and 1.5 TMR imageswere
available to download for 321 ADNI participants. We excluded from our
analysis any subjects for whom one or both of the FDG-PET images
were acquired using the Siemens HRRT or BioGraph HiRez scanners
(n=78), due to differences in the observed pattern of FDG metabolism
that were discovered during the ADNI quality control process. Further
information is available on the ADNI PET Core website (http://www.
loni.ucla.edu/twiki/bin/view/ADNI/ADNIPETCore). We also excluded a
small number of subjects (n=10) whose images could not be processed
as required, either because of missing timeframe information in the
FDG-PET image headers, or incorrect positioning of subjects in the PET
scanner, such that part of the brain was outside the field of view. The
MCI subjects were divided into pMCI and sMCI based on changes in clin-
ical status occurring over 19±10 (range 6–48) months. Subjects whose
diagnosis did not clearly fall into one of the four clinical categories
(AD, pMCI, sMCI, HC) were additionally excluded (n=12). Of these 12,
five progressed from HC to MCI, five reverted from MCI to HC, and two
oscillated betweenMCI andHC.ADNI subject identifiers for the 22exclud-
ed subjects are provided as Supplementary data.
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We use imaging data from 221 participants (50 AD, 53 pMCI, 64
sMCI, 54 HC), whose groupwise characteristics are provided in
Table 1. The mean age at baseline (75.7±6.3 years) and mean time
between baseline and 12-month FDG-PET scans (11.6±0.9 months)
do not vary significantly (p>0.01) on t-test between the clinical groups.

Image processing

Our analysis is performed in native MRI space. Baseline anatomical
segmentations were automatically generated in the space of the base-
line MRI, and follow-up segmentations were produced by nonlinear
registration to the space of the 12-month MRI. FDG-PET images were
co-registered with their corresponding MR images. An independently
derived reference cluster required for FDG-PET image normalisation
was provided in MNI space (Mazziotta et al., 1995), and transformed
into the baseline and 12-monthMRI space of each subject. An overview
of the image processing pipeline is illustrated in Fig. 1, and full details of
each step are provided in the sections that follow.

ADNI FDG-PET acquisition
The FDG-PET images had been acquired using Siemens, GE and

Philips PET scanners according to one of three standard protocols
(30–60 minute dynamic, 30–60 minute static, 0–60 minute dynamic)
following the intravenous injection of 185±19 MBq of FDG. Data
were corrected for both scatter and measured attenuation, which
was determined using the CT scan for PET/CT scanners, and a transmis-
sion scanwith 68Ge or 137Cs rotating rod sources for PET-only scanners.
Images were reconstructed using scanner-specific algorithms, and sent
to the University of Michigan, where they were reviewed for artefacts,
de-identified, and transmitted to the Laboratory of NeuroImaging
(LONI) for storage. Further details are available in the ADNI PET techni-
cal procedures manual (ADNI PET Core, 2005).

FDG-PET image pre-processing
The 221 baseline and 12-month FDG-PET scans were downloaded

from the LONI Image Data Archive in their original DICOM or ECAT
format. They were converted to NIfTI using (X)MedCon (http://
xmedcon.sourceforge.net), with care taken to preserve negative values
and correctly apply any quantification factors. Each image was
examined for major artefacts, and its orientation adjusted if necessary.
The 30–60minute dynamic scans were corrected for patient motion
using tools from the Image Registration Toolkit (IRTK; http://www.
doc.ic.ac.uk/~dr/software) to register each of the subsequent frames
rigidly to the image's first frame. The resulting co-registered frames
were averaged to produce a single 30–60 minute static image. For the
0–60 minute dynamic scans, the final six 5-minute frames were
extracted, and concatenated into a static image in the same way.

ADNI MRI acquisition and pre-processing
Pre-processed versions of the 221 baseline and 12-month

T1-weighted 1.5 T MRI scans were downloaded from the LONI Image
Table 1
Clinical and demographic information for the study population. For each clinical group,
the total number of subjects (N) and number of females (F) are shown, along with the
baseline clinical dementia rating (CDR), average baseline mini-mental state examina-
tion (MMSE) score, and average change in MMSE score over the 12-month follow-up
period (ΔMMSE).

N(F) CDR (%) MMSE ΔMMSE

0 0.5 1 (mean±std. dev.) (mean±std. dev.)

AD 50 (20) 0 36 64 23.5±2.0 −2.76±3.96
pMCI 53 (20) 0 100 0 26.7±1.7 −1.79±2.57
sMCI 64 (18) 0 100 0 27.5±1.7 0.05±1.79
HC 54 (18) 100 0 0 28.9±1.2 0.30±1.47
Data Archive in NIfTI format. These had been acquired according to a
standard protocol (Jack et al., 2008) involving two scans per subject
that were based on a 3-D MPRAGE imaging sequence and acquired
using Siemens, GE and Philips MRI scanners. Further details are
available in the ADNI MRI technical procedures manual (ADNI MRI
Core, 2005). Of the two images acquired per subject and timepoint,
the ADNI quality assurance team selected the better image for
pre-processing, based on the presence and severity of common image
artefacts, as well as other criteria. Pre-processing involved the applica-
tion of a scanner-specific correction for gradient non-linearity distor-
tion (Gradwarp; Jovicich et al., 2006), followed by a correction for
image intensity non-uniformity (B1; Jack et al., 2008), and finally a
histogram peak sharpening algorithm for bias field correction (N3;
Sled et al., 1998). Only the N3 pre-processing step was necessary for
images acquired on Philips scanners, since B1 correction was already
implemented, and their gradient systems tended to be linear (Jack
et al., 2008).

Co-registration of FDG-PET with MRI
For each subject and timepoint, the pre-processed FDG-PET image

was co-registered with the corresponding pre-processed MR image,
and re-sampled to the higher resolution of the MRI. Tools from IRTK
were used to perform rigid and then affine registration, using normal-
ised mutual information as the similarity criterion (Studholme et al.,
1999), and the affine transformation parameters were applied to the
FDG-PET image using a linear interpolation. An affine transformation
was preferred over a rigid one because it can account for any scaling
or voxel size errors which may remain after phantom correction of
the MRI (Clarkson et al., 2009).

Baseline MRI anatomical segmentation
Automatic whole-brain segmentations into 83 anatomical regions

were prepared in the native space of each baseline MRI using multi-
atlas propagation with enhanced registration (MAPER), an approach
that has been previously described and validated for use in subjects
with AD, and age-matchedHC (Heckemann et al., 2010). The segmenta-
tions are available to download through the ADNI website, and full
details of the segmentation procedure and morphometric analysis are
presented inHeckemann et al. (2011). The required atlas data consisted
of manually segmented T1-weighted MR volumes from 30 young,
healthy adults, as described in Hammers et al. (2003). Protocols for
the manual delineation are described in Hammers et al. (2003) and
Gousias et al. (2008).

Individual tissue probability maps for CSF, grey matter and white
matter were obtained using FSL FAST (http://www.fmrib.ox.ac.uk/fsl).
For FDG-PET image analysis, the grey matter portion within each
cortical label is of relevance. Masked segmentations were therefore
employed, in which all regions except ventricles, central structures,
cerebellum and brainstem had been masked with a grey matter label,
and the lateral ventricles with a CSF label.

12-month MRI anatomical segmentation
To obtain similar whole-brain anatomical segmentations for the

follow-up images, we propagated each baseline segmentation to the
space of the corresponding 12-month MR image using nonrigid
registration. The intracranial portion of the 12-month MRI was first
determined by rigid propagation of the baseline intracranial mask that
had been used for brain extraction during the MAPER segmentation
procedure. The baseline intracranial masks were derived, as described
in Heckemann et al. (2011), from binary masks covering intracranial
white and grey matter. These binary masks had been generated
using MIDAS, a semi-automatic procedure described elsewhere
(Freeborough et al., 1997; Leung et al., 2011). The rigidly aligned
intracranial-masked baseline and 12-month MRI were then affinely
aligned, again to account for possible scaling or voxel size errors,
followed by a series of nonrigid registrations. The nonrigid registration
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Fig. 1. Image processing pipeline, illustrating the images required for regional feature extraction from the baseline and 12-month FDG-PET images. Horizontal arrows indicate image
registration and re-slicing steps. Vertical arrows indicate images used for feature extraction.
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used was a free-form deformation, with a flexibility defined by the
spacing of a lattice of control points (Rueckert et al., 1999; Schnabel
et al., 2001). Nonrigid registration was performed using control point
spacings of 10, 5, and 2.5 mm. The unmasked baseline anatomical
segmentation was nonrigidly propagated to 12-month MRI space
using nearest neighbour interpolation. Individual tissue probability
maps for CSF, grey matter and white matter were obtained for the
12-month MRI using FSL FAST, and the segmentation masked using
the same procedure as for the baseline.

FDG-PET normalisation
FDG-PET image normalisation is often performed relative to the

cerebral globalmean. However, due to the nature of the disease process,
both MCI and AD patients have a lower glucose metabolic rate than HC
across the whole brain. Normalisation to the cerebral global mean
therefore artificially scales up values from patients, whilst scaling
down those from HC, resulting in under-estimation of the relative
hypometabolism in patients compared to HC (Yakushev et al., 2008).
In addition, such normalisation results in areas of apparent hypermeta-
bolism being observed in patients compared to HC in regions of the
brain that are relatively preserved in AD, including the cerebellum,
brainstem, basal ganglia, and sensorimotor cortex (Herholz et al.,
2002). Recent work suggests that improved group discrimination can
be achieved by using the signal intensity in these relatively preserved
regions of the brain for normalisation, rather than the cerebral global
mean value (Borghammer et al., 2009; Yakushev et al., 2009). Our
analysis makes use of this “reference cluster” normalisation method.

We obtained a MNI space image of the reference cluster used in
Yakushev et al. (2009) from the author. Using the “Segment” module
of SPM5 (http://www.fil.ion.ucl.ac.uk/spm), each baseline and
12-month MRI was linearly and non-linearly deformed (Ashburner
and Friston, 2005) to the MNI template. The inverse transformation
was used to map the MNI-space cluster into the native MRI space of
each subject and timepoint using trilinear interpolation. The cluster
was also re-sampled to the higher resolution of the MRI.

Regional feature extraction and classification

Each of the MRI-space FDG-PET images was overlaid with its corre-
sponding masked anatomical segmentation. The FDG-PET signal inten-
sity per mm3 was determined for each of the 83 anatomically defined
regions. Global variations in the cerebral metabolic rate of glucose
between subjects were accounted for by normalisation to the signal
intensity per mm3 in the reference cluster. Typical examples of the
images required for regional feature extraction are shown in Fig. 2.
Normalised regional signal intensities were thus extracted from both
the baseline and 12-month FDG-PET images. Additionally, the regional
changes in FDG-PET signal intensity over the 12-month follow-up
period were determined. Each subject therefore had 249 regional
features available for use in classification experiments.

We performed classification using a SVM classifier with LIBSVM
(http://www.csie.ntu.edu.tw/~cjlin/libsvm), an integrated software for
support vector classification (Chang and Lin, 2011). Robust estimates
of classifier performance were obtained via a repeated random
sampling approach, assessing the classification rates between four
clinically relevant pairs of diagnostic groups (AD/HC, pMCI/HC, AD/
sMCI, pMCI/sMCI). The mean classification accuracy, sensitivity, speci-
ficity and balanced error rate for pairs of groups were evaluated over
1000 runs, in which 75% of the subjects were randomly selected for
training, with the remaining 25% used as test data. We tested five re-
gional feature sets: baseline signal intensities, 12-month signal intensi-
ties, relative changes in signal intensity over 12 months, baseline signal
intensities concatenated with 12-month changes, and 12-month signal
intensities concatenated with 12-month changes. For each clinical
group pair, unpaired t-tests between the distributions of classification
results obtained from the 1000 leave-25%-out runs were performed to
assess the significance of differences in performance between the five
feature sets. Since we accounted for the relative sizes of the clinical
groups when sampling the training sets and training the SVM classifier,
the sensitivity and specificity values obtained were fairly well balanced,
and the balanced error rate was very similar to the total accuracy. We
therefore selected total accuracy as an overall performance metric,
because this allowed for more direct comparisons with other published
works which quote classification performance in terms of accuracy.

In addition, to allow a better assessment of the statistical signifi-
cance of our results, we performed permutation testing for all classifica-
tion experiments. For each pair of clinical groups, the diagnostic labels
were randomly permuted, the data divided into training and test sets,
and the SVM classifier trained and tested as described above. This pro-
cess was repeated 1000 times per clinical group pair. Permutation
tests thus provide a distribution of classification accuracies under the
null hypothesis, that the classifier cannot accurately predict the clinical
labels from the data provided. To assess whether our observed classifi-
cation accuracy for the clinical group pair was significantly different
from chance, we therefore performed an unpaired t-test between the
distribution of observed accuracies, and the distribution obtained
from permutation testing.

A two-class SVM aims to construct a hyperplane that maximises the
margin, which is the distance between the closest points on either side
of the boundary, known as the support vectors. For a set of training data
X; tð Þ ¼ xi; tið Þf gNi¼1, where each subject has a feature vector
x ¼ x1; x2;…; xDð Þ, and a class label t∈{−1,1}, a hyperplane separating
the classes may be written y xð Þ ¼ wTx−b ¼ 0. Since the data were
unlikely to be linearly separable, we applied a soft-margin formulation
of the SVM (LIBSVM “C-SVC”), inwhich the trade-off betweenmaximis-
ing the margin and minimising the training error is controlled by the
penalty parameter C. Additionally, the data were transformed into a
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Fig. 2. Typical examples of the images required for regional feature extraction from the baseline images of a HC subject. From left to right: baseline MRI overlaid with baseline FDG-
PET; masked anatomical segmentation; baseline FDG-PET overlaid with normalisation cluster. The regional colour map for the segmentation is as used in Gousias et al. (2008).
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higher-dimensional space using the nonlinear function ϕ. A boundary
that is nonlinear in the original feature spacemay be better approximat-
ed by the linear boundary y xð Þ ¼ wTϕ xð Þ−b ¼ 0 in the transformed
space. This requires the solution of the optimisation problem (Cortes
and Vapnik, 1995).

min
w;ξ;b

1
2
wTw þ C

XN
i¼1

ξi

( )

subject to ti wTϕ xið Þ−b
� �

≥1−ξi and ξi≥0;

where ξ are slack variables which model the allowable degree of
misclassification. The nonlinear mapping was performed using a radial
basis function kernel k xi; xj

� �
≡ϕ xið ÞTϕ xj

� �
¼ exp −γ‖xi−xj

2‖
� �

of
width γ>0. As part of the training process, it was necessary to optimise
the parameters C and γ. This was achieved by performing a grid-search
using five-fold cross-validation, such that the (C, γ) pair resulting in the
highest cross-validation accuracy was selected. The SVM classifier was
then trained using the full set of training data, before having its perfor-
mance assessed on the test data.

Results

Classification experiments

Two sets of cross-sectional features had been extracted for each sub-
ject (regional signal intensities at each of the two imaging timepoints).
For all four clinical group pairs, highly significant (pb0.001) increases in
classification accuracy were achieved when using 12-month signal in-
tensities compared with using baseline signal intensities. Longitudinal
features had also been evaluated as the relative changes in signal inten-
sity over the 12-month follow-up period. For each of the four pairs of
clinical groups, classification based on the longitudinal information
alone had significantly (pb0.05) lower accuracy compared with using
either of the two cross-sectional feature sets.

We also assessed classification performance based on two feature
sets which combined the cross-sectional and longitudinal information.
These were formed by concatenating the longitudinal change features
with the signal intensities at either imaging timepoint. For each clinical
group pair, highly significant (pb0.001) increases in classification accu-
racy were achieved when combining longitudinal information with
12-month data, compared with its combination with baseline data. In
addition, classification based on the combination of longitudinal data
with 12-month signal intensities was significantly (pb0.05) improved
compared with using 12-month signal intensities alone.

The above results are illustrated as boxplots in Fig. 3, and numerical
results are provided in Table 2 for the two cross-sectional feature sets
and the best-performing combined feature set (longitudinal change
concatenated with 12-month signal intensities). Receiver operating
characteristic (ROC) curves for classification based on this combined
feature set are displayed in Fig. 4, along with the area under each
curve (AUC), which provides an overall measure of classifier perfor-
mance. All classification accuracies were significantly different from
chance, as assessed by permutation testing.

To demonstrate that classification was truly based on disease-
specific imaging information, rather than the intrinsic age and gender
information captured in the images, we additionally performed classifi-
cation after accounting for these effects. A linear regression step was
incorporated into the classification procedure for every clinical group
pair such that, for each of the 1000 repetitions, a regression model
was estimated from the training data, and the SVM trained on the resid-
uals. The regression model was then applied to the test data, and the
SVM tested on the resulting residuals. Regression had no significant
effect on the classification accuracy for the majority of experiments.
Using the best performing combined feature set (longitudinal change
concatenated with 12-month signal intensities), accuracies after linear
regression for gender and age at scan were not significantly different
for AD/HC, pMCI/HC, or AD/sMCI. However, the mean accuracy
improved from 63% to 64% for pMCI/sMCI.
Regional features

Weperformed t-tests between pairs of clinical groups to identify the
regional features which give significant (pb0.01, uncorrected for multi-
ple comparisons) differences between diagnostic groups. We consid-
ered both sets of cross-sectional features (baseline and 12-month
regional signal intensities), as well as the regional changes in signal
intensity over the 12-month follow-up period.

The overwhelming majority of regions differed significantly
between AD patients and HC for both baseline intensities (65/83
regions), and 12-month intensities (73/83 regions). For the 12-month
data, as well as more regions reaching significance, significance levels
were higher than for the baseline data. Far fewer regions reached signif-
icance for the change features (26/83 regions), and significance levels
were lower than for either of the cross-sectional feature sets. These
results are illustrated in Fig. 5, and similar patterns were consistently
observed across the remaining three clinical group pairs (pMCI/HC,
AD/sMCI, pMCI/sMCI). For these pairs of groups, fewer regions reached
significance than between AD patients and HC, and at reduced signifi-
cance levels. The fewest significant regions, and lowest significance
levels were found between pMCI and sMCI patients.

For both sets of cross-sectional features, the five most significantly
different regions between AD patients and HC were the bilateral
hippocampus, left parietal lobe, left posterior temporal lobe, and right
posterior cingulate gyrus. However, only one of these regions (right
hippocampus)was amongst thefivemost significantly different regions
for the change features, alongwith the right amygdala, rightmiddle and
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Fig. 3. Classification accuracies for the four clinical group pairs based on thefive feature sets studied. From left to right for each boxplot: (a) baseline signal intensities, (b) 12-month signal
intensities, (c) change over 12 months, (d) combined baseline intensities and change, and (e) combined 12-month intensities and change. In each boxplot, the central red line represents
themedian, the edges of the blue box represent the 25th and 75th percentiles, and the blackwhiskers extend to themost extreme data points not considered outliers. Outliers are plotted
individually in red for points lying outside of the range ±2.7σ.
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inferior temporal gyri, right posterior part of the superior temporal
gyrus, and right posterior temporal lobe. For the remaining three
group pairs, the five most significantly different regions for each of the
three feature sets contained some combination of the regions identified
between AD patients and HC, with the parahippocampal gyrus also
identified in some cases.

Interestingly, the amygdala was consistently identified amongst the
five most significantly different regions for the change features, but not
for either of the cross-sectional feature sets. In fact, it was the only
region reaching significance for the change features between pMCI
and sMCI patients.

Discussion and conclusion

We demonstrate that a combination of cross-sectional and longitu-
dinal FDG-PET information results in classification performance that is
in line with the current state-of-the-art. For the most commonly
reported classification task of separating AD patients fromHC, our accu-
racy of 88% is comparable with other recent classification results based
onmulti-modality imaging and non-imaging data (Hinrichs et al., 2011;
Zhang et al., 2011), and also with the results of high-dimensional
Table 2
Classification accuracy (acc), sensitivity (sens), specificity (spec), and balanced error
rate (BER) expressed as mean (standard deviation) over the 1000 leave-25%-out
runs. Results are provided for baseline signal intensities, 12-month signal intensities,
and the feature set combining relative changes with 12-month signal intensities. The
effects of gender and age at scan are not regressed out for these data.

AD/HC pMCI/HC AD/sMCI pMCI/sMCI

Baseline Acc (%) 80.9 (6.7) 70.7 (7.6) 72.7 (7.8) 58.4 (7.9)
Sens (%) 79.6 (10.6) 70.5 (13.0) 65.6 (13.2) 51.5 (13.1)
Spec (%) 82.3 (11.1) 71.0 (12.3) 78.5 (10.8) 64.8 (13.4)
BER (%) 80.9 (6.7) 70.8 (7.6) 72.0 (7.9) 58.1 (7.9)

12-month Acc (%) 86.1 (6.3) 79.2 (7.3) 79.3 (6.7) 62.3 (7.8)
Sens (%) 81.2 (10.3) 77.2 (11.9) 77.9 (11.2) 53.2 (13.1)
Spec (%) 91.0 (8.2) 81.4 (11.0) 80.5 (9.3) 70.8 (12.4)
BER (%) 86.1 (6.3) 79.3 (7.3) 79.2 (6.8) 62.0 (7.8)

Combined Acc (%) 88.4 (6.2) 81.3 (6.8) 83.5 (7.1) 63.1 (8.1)
Sens (%) 83.2 (10.4) 79.8 (11.1) 79.9 (11.5) 52.2 (13.5)
Spec (%) 93.6 (7.4) 82.9 (10.7) 86.4 (8.9) 73.2 (12.3)
BER (%) 88.4 (6.2) 81.4 (6.8) 83.2 (7.2) 62.7 (8.1)
pattern recognition methods applied to cross-sectional MR imaging
data (Chupin et al., 2009; Cuingnet et al., 2011). Classification results
maywell be converging on a “glass ceiling” for this task, since diagnostic
consensus criteria themselves have an accuracy of around 90%
(Ranginwala et al., 2008). For FDG-PET in particular, it is also important
to consider the further confounding factor that approximately 10% of
the ADNI AD patients have a pattern of glucose metabolism that is
more consistent with frontotemporal dementia (Jagust et al., 2010;
Thiele et al., 2009).

We additionally attempt the less commonly reported classification
task of separating pMCI from sMCI patients. Our accuracy of 65% is
encouraging compared with the most directly comparable studies
based on MR imaging data (Cuingnet et al., 2011; Wolz et al., 2010). It
has been reported that progression from MCI to AD occurs at a rate of
10–15% per year (Petersen, 1999),with up to 80% ofMCI patients devel-
oping AD over a six year period (Petersen, 2004). To properly assess the
utility of any classification method in predicting such progression,
longer clinical follow-up is therefore required than is currently available
for the ADNI participants.
Fig. 4. ROC curves for the combined feature set of relative changes concatenated with
12-month signal intensities. AUC values for each clinical group pair are provided in brackets.
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Fig. 5. Regional t-values for comparisons between AD patients (n=50) and HC (n=54)
superimposed onto sagittal (top row) and coronal (bottom row) slices of a maximum
probability brain atlas, which has been masked according to the same procedure as the
anatomical segmentations. The feature sets tested are, from left to right: baseline signal
intensities; 12-month signal intensities; changes in signal intensity over 12 months. To
allow all three feature sets to be visualised using the same colour scale, so that their spatial
patternsmay be compared, all t-values greater than 5.5 have been scaled to themaximum
value.
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To verify that the regional features used for classification made
biological sense, we performed t-tests between clinical groups to assess
which regions gave statistically significant group differences. Although
a direct visualisation of the SVM weight vector would be desirable,
because of the nonlinearity of the kernel used, it was not possible to
map the weight vectors learned in the transformed feature space back
to the original feature space in a meaningful way. We therefore
explored univariate changes using t-tests for the purposes of visualisa-
tion. When considering the cross-sectional data, regional t-values
between AD patients and HC indicated significant differences across
most of the brain. This finding is consistent with the voxel-wise t-tests
reported in Yakushev et al. (2009). The most significantly different
regions between groups included those known to be affected in AD
for all three feature sets, consistent with previous voxel-wise t-tests
performed on the ADNI FDG-PET data (Chen et al., 2010; Langbaum
et al., 2009).

Similarly to Hinrichs et al. (2011), we found that the percentage
change in signal intensity over 12 months alone does not provide
particularly impressive classification performance between AD patients
and HC (74% accuracy). Although the longitudinal data alone appear
insufficient for matching state-of-the-art classification performance,
our results demonstrate that they can provide some complementary
informationwhich can enhance classificationwhen used in conjunction
with cross-sectional features. This suggestion is supported by our t-test
results, which show that the pattern of regional significances differs
between cross-sectional and longitudinal data. For example, the amyg-
dala is identified amongst the bestfive features for groupdiscrimination
only for the longitudinal data. The two cross-sectional feature sets, on the
other hand, have similar patterns of regional significances, although
improved groupdiscriminationmaybe achievedwith the 12-month data.

We additionally performed all classification experiments after
accounting for the effects of age and gender by linear regression. The
lack of significant effect on accuracy observed in the majority of cases
indicates that the classification results were truly based on disease-
specific imaging information, rather than the intrinsic age and gender
information also captured in the images. The significant improvement
observed between pMCI and sMCI patients is in agreement with our
previous findings (Gray et al., 2011b, 2011c). In our previous work,
we had performed a global regression, whereby the coefficients for
age and gender were estimated using all the available data from all
four of the diagnostic groups. We have since demonstrated that there
is little appreciable difference between the effect of the two regression
approaches.

The aim of this work has not been to introduce a novel classification
approach, but instead to use a readily available SVM classifier and
simple feature combination approach (direct concatenation) to demon-
strate the utility of longitudinal FDG-PET information for improving
classification amongst four clinically relevant pairs of diagnostic groups.
Having established that the longitudinal features can indeed enhance
the results achieved using cross-sectional data alone, it may be benefi-
cial to investigate the application of kernel combination methods,
which are reported to be superior to simple concatenation for combin-
ing feature sets (Zhang et al., 2011). Additionally, the possibility of
multi-class classification could be investigated, for example, using the
LIBSVM “one-against-one” multi-class strategy (Chang and Lin, 2011).

An important consideration of the described regional FDG-PET anal-
ysis approach is its requirement for MR imaging data. Structural imag-
ing, either with MRI or CT, is routinely used in clinical practice to
identify brain lesions that could lead to a clinical picturemimicking a di-
agnosis of AD. Both MRI and FDG-PET are mentioned in the revised AD
diagnostic criteria (Albert et al., 2011; McKhann et al., 2011; Sperling et
al., 2011) as providing potentially useful biomarkers, and the recent
development of hybrid MRI-PET technology means that the simulta-
neous acquisition of both modalities could become a practical solution
for dementia imaging in the future. For example, one such system has
been approved for use in clinical practice in both Europe and the USA,
and its clinical application in oncology has already been demonstrated
(Drzezga et al., 2011). The requirement for MR data has the key benefit
that regional volumes and volume changes are also available for each
patient, and these data could potentially be combined with the
FDG-PET information.

There are two methodological image processing issues which are
important to discuss. The first concerns our decision to nonrigidly
propagate the baseline segmentations to follow-up space, rather
than, for example, using the MAPER segmentation procedure to auto-
matically generate independent follow-up segmentations. Despite
the fact that erroneously labelled voxels in the baseline segmentation
are propagated to the follow-up image, intra-subject consistency of
the segmentation is important for measuring longitudinal change
(Crum et al., 2001), since uncorrelated errors lead to greater mea-
surement uncertainty. The second is the issue of FDG-PET image nor-
malisation. The reference cluster normalisation method (Yakushev
et al., 2009) was proposed as a data-driven method, with the cluster
derived directly from the image data. However, we used an indepen-
dently derived cluster for normalisation to avoid introducing bias into
the classification process. It was important to first assess the validity
of this approach, by determining whether the regions identified as
relatively preserved in Yakushev et al. (2009) are also valid for the
ADNI dataset. We therefore derived a reference cluster using the
ADNI FDG-PET images, and calculated the intraclass correlation coef-
ficient (ICC) between the values obtained by sampling this ADNI
derived cluster and those obtained by sampling the independently
derived cluster. The resulting ICC of 0.95 suggests that the area of
the brain identified is reliably preserved across early AD and MCI,
and thus is likely to provide a robust and portable reference region
for image normalisation.

This study demonstrates that information extracted from serial
FDG-PET through regional analysis can accurately discriminate diagnos-
tic groups, even at the early symptomatic stages of the disease. This
finding may be usefully applied in the diagnosis of Alzheimer's disease,
predicting disease course in individuals with mild cognitive impair-
ment, and in the selection of participants for clinical trials. Importantly,
we demonstrate the utility of serial regional FDG-PET for patient classi-
fication in a realistic multi-centre setting. Although the use of longitudi-
nal data for the clinical diagnosis of AD is not necessarily practical, its
use for stratification of pMCI versus sMCI patients could still be valuable.
For clinical trial recruitment, in particular, it may well be acceptable to
use longitudinal information acquired over 12 months to gain addition-
al certainty about whether a candidate fits the selection criteria.

We have identified several areas for further research. We have
already begun to explore some of the possibilities, such as using a
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more sophisticated method for data combination, and making use of
both MRI and PET in combination (Gray et al., 2011a). In the future,
we intend to additionally investigate the incorporation of non-
imaging data, such as CSF biomarkers or genetic information. Machine
learning techniques using cross-sectional FDG-PET data have been suc-
cessful in discriminating AD patients from those with frontotemporal
dementia (for example, Kippenhan et al., 1994; Xia et al., 2008), and
we would be interested to investigate the effect of incorporating longi-
tudinal information on such differential diagnoses. While it is possible
that the ADNI dataset contains some patients with other dementias,
such as frontotemporal dementia or dementia with Lewy bodies,
these patients are not clinically labelled as such. To perform a thorough
study on differential diagnosis, a large and varied cohort of dementia
patients with autopsy-confirmed clinical diagnoses would be required,
such as that described in Silverman et al. (2001).

Supplementary materials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.12.071.
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