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Neurodegenerative disorders, such as Alzheimer's disease, are associatedwith changes inmultiple neuroimaging
and biological measures. Thesemay provide complementary information for diagnosis and prognosis. We present
a multi-modality classification framework in which manifolds are constructed based on pairwise similarity
measures derived from random forest classifiers. Similarities frommultiplemodalities are combined to generate
an embedding that simultaneously encodes information about all the available features. Multi-modality classifi-
cation is then performed using coordinates from this joint embedding. We evaluate the proposed framework by
application to neuroimaging and biological data from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
Features include regional MRI volumes, voxel-based FDG-PET signal intensities, CSF biomarker measures, and
categorical genetic information. Classification based on the joint embedding constructed using information
from all four modalities out-performs the classification based on any individual modality for comparisons be-
tween Alzheimer's disease patients and healthy controls, as well as betweenmild cognitive impairment patients
and healthy controls. Based on the joint embedding, we achieve classification accuracies of 89% between
Alzheimer's disease patients and healthy controls, and 75% between mild cognitive impairment patients and
healthy controls. These results are comparable with those reported in other recent studies using multi-kernel
learning. Random forests provide consistent pairwise similarity measures for multiple modalities, thus facilitat-
ing the combination of different types of feature data. We demonstrate this by application to data in which the
number of features differs by several orders of magnitude between modalities. Random forest classifiers extend
naturally to multi-class problems, and the framework described here could be applied to distinguish between
multiple patient groups in the future.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Changes in multiple biomarkers may provide complementary infor-
mation for the diagnosis and prognosis of neurodegenerative disorders
such asAlzheimer's disease (AD). At present, the clinical diagnosis of AD
is based on assessments of cognition and behaviour, which start to de-
cline in the later disease stages. Recently published revisions to the di-
agnostic criteria (Albert et al., 2011; McKhann et al., 2011; Sperling et
ined from the Alzheimer's Dis-
dni.loni.ucla.edu). As such, the
and implementation of ADNI
is or writing of this report. A
t http://adni.loni.ucla.edu/wp-
t_List.pdf.
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al., 2011) incorporate suggestions that biological and neuroimaging
measures of structural and molecular changes in the brain may be bet-
ter suited for the early detection of AD, aswell as formonitoring its pro-
gression. Automated classification of individual patients based on
multiple biomarkers could provide valuable support for clinicians,
when considered alongside cognitive assessment scores and traditional
visual image analysis. This could be particularly useful for monitoring
the progression of patients with mild cognitive impairment (MCI),
which is often a transitional stage between the cognitive decline associ-
ated with normal ageing, and that of established AD.

The neuropathological changes associated with the development
of AD begin many years before cognitive symptoms become apparent.
According to the amyloid cascade hypothesis, the disease process be-
gins with the formation of insoluble β-amyloid (Aβ) plaques, whose
presence triggers the hyperphosphorylation of tau protein, ultimately
leading to cell death (Selkoe, 1991). Surrogate measures of the levels
of Aβ and tau in the brain may be obtained from the cerebrospinal
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fluid (CSF). Various studies have shown reduced CSF Aβ and elevated
CSF tau in AD patients compared with cognitively normal individuals
(for example, Motter et al., 1995; Vandermeeren et al., 1993). MCI pa-
tients tend to have CSF Aβ and tau levels between those expected of
AD patients and healthy controls, with AD-like biomarker levels asso-
ciated with an increased likelihood of progression to AD (Hansson et
al., 2006). Positron emission tomography (PET) imaging with radio-
tracers for amyloid provides an alternative method for assessing in-
tracranial Aβ deposition (Klunk et al., 2004).

PET imaging with the radiotracer [18F]-fluorodeoxyglucose (FDG)
can be used to assess brain function in terms of the rate of cerebral glu-
cose metabolism. Both AD and MCI are associated with significantly re-
duced glucose metabolism in affected regions, including temporal and
parietal lobes, and the posterior cingulate cortex (Herholz et al., 2002;
Langbaumet al., 2009). Reducedmetabolism in ADpatients is predictive
of their cognitive decline and histopathological diagnosis (Hoffman et
al., 2000; Silverman et al., 2001), and in MCI patients can predict their
progression to AD (Anchisi et al., 2005). Changes in metabolism can be
detected on FDG-PET before corresponding structural changes are visi-
ble (Aisen et al., 2010). FDG-PET-based classification techniques can dis-
criminate both AD and MCI patients from healthy controls (Hinrichs et
al., 2009).

The progressive structural damage caused by AD can be non-
invasively assessed by usingmagnetic resonance imaging (MRI) tomea-
sure cerebral atrophyor ventricular expansion. Temporal lobe atrophy is
closely associatedwithAD, andhistological studies show that thehippo-
campus, amygdala and entorhinal cortex are particularly vulnerable to
AD pathology (Braak and Braak, 1998). Accelerated hippocampal atro-
phy compared with healthy controls has been measured using MRI in
both AD and MCI patients (Schuff et al., 2009; van de Pol et al., 2007).
A recent study (Cuingnet et al., 2011) comparing ten MRI-based
high-dimensional classification methods reported good results in dis-
criminating between AD patients and healthy controls (up to 81% sensi-
tivity and 95% specificity). Two methods relied on only hippocampal
shape or volume, while the remainder were whole-brain approaches,
using either cortical thicknessmeasures, or voxel-wise tissue class prob-
abilities. Four of the ten methods achieved slightly better accuracy than
a random classifier in distinguishing MCI patients who later progressed
to AD from MCI patients remaining stable over 18 months.

Although age is the most significant risk factor for AD (Rocca et al.,
1991), genetic and environmental factors also play a role. The ApoE
gene is the only one so far shown to be associated with sporadic late-
onset AD (Dawbarn and Allen, 2007). There are three major alleles of
this gene: ε2, ε3 and ε4. The most common is ε3, while ε4 is associated
with an increased risk of developing AD, and ε2 with a reduced risk
(Corder et al., 1993). More extensive AD pathology is generally observed
in carriers of the ApoE ε4 allele than in non-carriers (Roses and Saunders,
1997). Genetics can therefore impact the biological and neuroimaging
biomarkers. For example, AD carriers of the ApoE ε4 allele typically
have reduced CSF Aβ, elevated CSF tau, and accelerated hippocampal
atrophy on MRI compared with non-carriers (Schuff et al., 2009;
Tapiola et al., 2000). Cognitively normal carriers of the ApoE ε4 allele dis-
play reduced glucose metabolism on FDG-PET in AD-typical regions
(Langbaum et al., 2009).

The above biomarker patterns, however, are not specific to AD. For
example, reduced CSF Aβ and elevated CSF tau are also associated with
Lewy body dementia and vascular dementia (Andreasen et al., 2001;
Blennow and Hampel, 2003). Temporal lobe atrophy is also observed in
hippocampal sclerosis and temporal lobe epilepsy (Keihaninejad et al.,
2012), and an AD-like metabolic pattern can also indicate Creutzfeldt–
Jakob disease (Hoffman et al., 1990). It has been suggested that there
may be some complementary information between modalities which
can be exploited to produce more powerful combined classifiers
(Landau et al., 2010; Walhovd et al., 2010). The potential utility of bio-
marker combinations is also supported by the recently revised diagnostic
criteria (Albert et al., 2011; McKhann et al., 2011; Sperling et al., 2011).
For research applications, these incorporate a biomarker-based probabil-
ity of AD aetiology which is highest when evidence of both amyloid de-
position and neuronal degeneration or injury are observed. This
support has resulted in an increasing interest in usingmulti-modality im-
aging and biological data for classification. Studies reporting multi-
modality AD classification are far less common than those based on
data froma singlemodality (Weiner et al., 2012). However, two indepen-
dent studies (Hinrichs et al., 2011; Zhang et al., 2011) usingmulti-kernel
learning report that classification based onmulti-modality data is superi-
or to that based on any individual modality. Classification accuracies of
93%betweenADpatients andhealthy controls, and 76%betweenMCI pa-
tients and healthy controls were reported in Zhang et al. (2011), based
on a combination of FDG-PET, MRI and CSF measures.

We present a framework for multi-modality classification based on
pairwise similarity measures derived from random forests (Breiman,
2001). The similarities are used to construct a manifold representation
from labelled training data and then to infer the clinical labels of test
data mapped into this space. Classical multidimensional scaling (MDS)
(Torgerson, 1952) is applied to learn a manifold on which to perform
classification, resulting in the construction of a coordinate embedding
in which the distances between points preserve their pairwise similari-
ties. MDS is commonly used to provide low-dimensional visualisations
of similarity relationships, including those derived from random forests
(Hastie et al., 2011). Random forest-derived similarities have been suc-
cessfully applied in unsupervised clustering tasks, for example those in-
volving high-dimensional genetic or tissue microarray data (Shi and
Horvath, 2006; Shi et al., 2005). Here, random forests are used to derive
supervised similarity measures, with the aim of generating manifolds
that are optimal for the task of clinical group discrimination. The pro-
posed method facilitates the incorporation of multi-modality data,
since similarities derived from several datasets may be combined to
generate an embedding that simultaneously encodes information from
all features.

Manifold learning techniques based on pairwise similarities between
images have been applied in a variety of neuroimaging studies. For ex-
ample, Laplacian eigenmaps (Belkin and Niyogi, 2003) have been used
to generate an embedding of brain MR images based on similarities de-
rived from overlaps of their structural segmentations (Aljabar et al.,
2008). Isomap (Tenenbaum et al., 2000) has also been used to estimate
the manifold structure of brain MR images, using distance measures
based on nonrigid transformations between image pairs (Gerber et al.,
2010). A framework for fusing manifold learning steps based on differ-
ent pairwise similarity measures was presented in Aljabar et al.
(2010). The method proposed here uses random forests to derive con-
sistent pairwise similarity measures for multiple modalities, thus facili-
tating the combination of different types of feature data. We evaluate
the proposed multi-modality classification framework by application
to neuroimaging and biological data from the Alzheimer's Disease Neu-
roimaging Initiative (ADNI). These data include FDG-PET and MR imag-
ing data, CSF biomarker measures, and categorical genetic information.
Thiswork is an extension of preliminary studies involving neuroimaging
data which have been previously presented at a workshop (Gray et al.,
2011).
Methodology

A schematic overview of the proposed approach is illustrated in
Fig. 1. A random forest classifier was applied to the feature data from
eachmodality independently, not only to obtain single-modality classi-
fication results for comparison, but also to derive the similarities re-
quired for manifold learning. The resulting similarity matrices were
combined, and classicalMDSwas applied to generate a joint embedding
for multi-modality classification. Full details of the data collection and
feature extraction are presented in the Neuroimaging and biological
feature data section.



Fig. 1. Schematic overview of the proposed methodology. Each random forest (RF) step
provides a classification result whose performance will be reported. Random forests are
used both to derive the pairwise similarity measures for each feature set, and also to per-
form the single- and multi-modality classification experiments.
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Random forests for classification

A random forest (Breiman, 2001) is an ensemble classifier consisting
of many decision trees, where the final predicted class for a test example
is obtained by combining the predictions of all individual trees, as illus-
trated in Fig. 2. Random forests combine bootstrap aggregation (bagging)
(Breiman, 1996) and random feature selection (Amit and Geman, 1997;
Ho, 1998) to construct a collection of decision trees exhibiting controlled
variation.We used the R implementation of random forests, a port of Leo
Breiman and Adele Cutler's original Fortran code by Andy Liaw andMat-
thew Wiener, version 4.6–6 (http://cran.r-project.org/web/packages/
randomForest).

The training set for each individual tree in a random forest is
constructed by sampling N examples at random with replacement
from the N available examples in the dataset. This is known as boot-
strap sampling, and bagging describes the aggregation of predictions
from the resulting collection of trees. As a result of the bootstrap sam-
pling procedure, approximately one third of the available N examples
are not present in the training set of each tree. These are referred to as
the “out-of-bag” data of the tree, for which internal test predictions
can be made. By aggregating the predictions of the out-of-bag data
across all trees, an internal estimate of the generalisation error of
the random forest can be determined.

At each node in a tree, d≪D features are randomly selected from
the D available features in the dataset, and the node is partitioned
using the best possible binary split. A parent node np is partitioned
into child nodes nl and nr according to the Gini index (Breiman et
al., 1984), which measures the likelihood that an example would be
incorrectly labelled if it were randomly classified according to the dis-
tribution of labels within the node. For a binary split, the Gini index of
a node nmay be expressed as IG nð Þ ¼ 1−∑2

c¼1pc
2, where pc is the rel-

ative proportion of examples belonging to class c present in node n.
The best possible binary split is the one which maximises the im-
provement in the Gini index ΔIG(np)= IG(np)−plIG(nl)−prIG(nr),
where pl and pr are the proportions of examples in node np that are
Fig. 2. Illustration of a random forest, showing two trees in detail. Each node is partitioned
based on a single feature, and each branch ends in a terminal node. Terminal nodes pro-
vide a prediction for the class of a test example based on the path taken through the
tree. The colour of a terminal node indicates its class prediction. The final predicted class
for a test example is obtained by combining the predictions of all individual trees.
assigned to child nodes nl and nr, respectively. The Gini index can
also be used to assess the relative importance of features for classifi-
cation. A measure of the importance of an individual feature may be
computed by summing the decreases in the Gini index occurring at
all nodes in the forest which are partitioned based on that feature.

Manifold learning based on random forest similarities

Random forests can provide measures of the similarity between
pairs of examples in the dataset. Each of the N examples is represent-
ed by a feature vector, all of which are passed down each tree in the
forest. The similarities are initialised to zero, and if examples i and j
finish in the same terminal node of a tree, their similarity sij is in-
creased by one. The final pairwise similarity measures are normalised
by the total number of trees in the forest.

The similarities thus form a N×N matrix with elements sij, and
corresponding distance matrix elements dij=1−sij (Cox and Cox,
2001). Manifold learning techniques may be applied to find an appro-
priate coordinate embedding for the feature vectors, such that the
distance relationships between them are preserved. A review of the
most popular manifold learning techniques, as applied to medical im-
aging, is provided in Aljabar et al. (2012). MDS (Torgerson, 1952) is
commonly used in conjunction with random-forest derived similarity
measures for low-dimensional data visualisation, as well as
unsupervised clustering tasks. In this work, MDS is applied to similar-
ity measures derived in a supervised manner from random forests,
with the aim of generating manifolds that are optimal for the task
of clinical group discrimination.

Using MDS, the matrix of coordinates X is derived by performing
an eigenvalue decomposition on the matrix of scalar products

B ¼ XTX ¼ −1
2

d2ij−
1
N

XN
i¼1

d2ij−
1
N

XN
j¼1

d2ij þ
1
N2

XN
i¼1

XN
j¼1

d2ij

8<
:

9=
;:

Retaining only the eigenvectors corresponding to the k
largest-valued eigenvalues leads to a k-dimensional embedding for
the data. A goodness-of-fit parameter G, describing the extent to
which the selected k eigenvectors represent the full matrix, can be
useful in selecting an appropriate dimensionality for the embedding.
The measure of goodness-of-fit used in this work is given by

G ¼ ∑k
j¼1λj

∑N
j¼1 max λj;0

� � ;

where the eigenvalues λj are sorted in decreasing order (Mardia et al.,
1979).

To generate an embedding that simultaneously incorporated in-
formation from multiple modalities, a joint similarity matrix S was
defined as a linear combination of the similarity matrices from each
of the four modalities Si. Each modality was assigned a weighting fac-
tor αi, such that S=∑ i=1

4 αiSi, where∑ i=1
4 αi=1. To ensure the best

combination of the four modalities for classification, the αi parame-
ters were optimised as part of the training process. This was achieved
by performing a grid-search within the training data to select the op-
timum modality weightings. The classifier was then trained using the
selected set of parameters, before having its performance assessed on
the test data.

Experiments and results

We applied the proposed methodology to neuroimaging and bio-
logical data from 147 ADNI participants for whom baseline 1.5 T
MRI, FDG-PET and CSF biomarker measures were available, as well
as ApoE genotype information.

http://cran.r-project.org/web/packages/randomForest
http://cran.r-project.org/web/packages/randomForest
image of Fig.�2
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Neuroimaging and biological feature data

Data used in the preparation of this article were obtained from the
ADNI database (http://adni.loni.ucla.edu). The primary goal of ADNI
has been to test whether serial MRI, PET, other biological markers,
and clinical and neuropsychological assessments can be combined
to measure the progression of MCI and early AD. A more detailed de-
scription of the ADNI study is provided in Appendix A.

We use imaging and biological data from 147 ADNI participants, in-
cluding 37 AD patients, 75 MCI patients, and 35 healthy controls (HC).
These represent all participants for whom ApoE genotype information
and baseline 1.5 TMRI, FDG-PET and CSFmeasures of Aβ, tau and phos-
phorylated tau (ptau) were available, subject to the exclusions de-
scribed in Appendix B. The MCI patients were divided into those who
have progressed to AD (pMCI) and those whose diagnoses have so far
remained stable (sMCI) based on changes in clinical status occurring
over 20±11 months (range 6–36). Clinical and demographic informa-
tion for the study population is provided in Table 1.

MRI feature extraction
Automatic whole-brain segmentations into 83 anatomical regions

were prepared in native MRI space using multi-atlas propagation with
enhanced registration (MAPER), an approach that has been previously
described and validated for use in AD (Heckemann et al., 2010). The seg-
mentations are available to download through the ADNI website, and
full details of the procedure and morphometric analysis are presented
in Heckemann et al. (2011). The required atlas data consisted of manu-
ally segmented T1-weighted MR volumes from 30 young, healthy
adults, as described in Hammers et al. (2003). Protocols for the manual
delineation are described in Hammers et al. (2003) and Gousias et al.
(2008).

Tomatch the requirements ofMAPER, additional pre-processingwas
applied for brain extraction and tissue classification. For brain extrac-
tion, intracranialmaskswere generated using binarymasks covering in-
tracranial white and grey matter as the starting point, as described in
Heckemann et al. (2011). The binary masks had been generated with a
semi-automatic procedure as part of a separate project using MIDAS
(Freeborough et al., 1997; Leung et al., 2011). Individual tissue probabil-
ity maps for greymatter, white matter and CSF were obtained using FSL
FAST (http://www.fmrib.ox.ac.uk/fsl). Binary maximum-probability tis-
sue class labels were employed to mask the anatomical segmentations.
All regions except ventricles, central structures, cerebellum and
brainstem were masked with a grey matter label. Lateral ventricles
were masked with a CSF label. Regional volumes were normalised by
the intracranial volume, resulting in 83 volumetric region-based fea-
tures per image.

FDG-PET feature extraction
Each FDG-PET image was motion-corrected as necessary, converted

to a 30-minute static image, examined for major artefacts, and affinely
aligned with the corresponding MRI using the Image Registration
Toolkit (IRTK; http://www.doc.ic.ac.uk/dr/software). An affine transfor-
mation was preferred over a rigid one because it can account for scaling
Table 1
Clinical and demographic information for the study population. For each group, the
total number of subjects (N) and number of females (F) are shown, along with the av-
erage age, average mini mental state examination (MMSE) score, and clinical dementia
rating (CDR).

N(F) Age MMSE score CDR (%)

(mean±std. dev.) (mean±std. dev.) 0 0.5 1

AD 37(14) 76.8±6.6 23.5±2.0 0 49 51
pMCI 34(12) 76.1±7.3 26.5±1.7 0 100 0
sMCI 41(12) 75.7±6.5 27.3±1.8 0 100 0
HC 35(12) 74.5±5.2 28.9±1.2 100 0 0
or voxel size errors remaining after phantom correction of the MRI
(Clarkson et al., 2009).

Using the “Segment” module of SPM5 (http://www.fil.ion.ucl.ac.uk/
spm), each MRI was linearly and non-linearly deformed to the Montreal
Neurological Institute (MNI) template (Ashburner and Friston, 2005).
The resulting transformation parameters were applied to the MRI-space
PET images using trilinear interpolation. The MNI-space PET images
(voxel sizes 2×2×2 mm) were then smoothed to a common isotropic
spatial resolution of 8 mm full-width-at-half-maximum (FWHM) using
scanner-specific kernels (Joshi et al., 2009), and then by an additional
8 mm FWHM isotropic Gaussian kernel. The smoothed images were in-
tensity normalised to account for inter-subject variability in overall radio-
activity using an independently-derived cluster of relatively preserved
regions (Yakushev et al., 2009). The a priori brain mask available in
SPM5 was thresholded at 50% probability, and applied to each
normalised FDG-PET image to exclude voxels outside the brain. Signal in-
tensities were extracted from all remaining voxels, resulting in 239,304
voxel-based features per image.

Biological features
The ADNI Biomarker Core provides biological data for the study par-

ticipants. These data include CSF measures of Aβ, tau and ptau, as well
as ApoE genotype information determined from a blood sample. Details
of the biofluid collection and processing are provided in Trojanowski et
al. (2010). The genetic feature data for each participant consisted of a
single categorical variable describing their ApoE genotype. These data
are summarised in Table 2.

Classification experiments

Classification performance was assessed between three clinically
relevant pairs of diagnostic groups (AD/HC, MCI/HC, pMCI/sMCI). Ro-
bust estimates of classifier performancewere obtained using a stratified
repeated random sampling approach. The mean accuracy, balanced ac-
curacy, sensitivity and specificity were evaluated over 100 runs in
which 75% of the data were randomly selected for training, with the
remaining 25% used as test data. Balanced accuracy is the arithmetic
mean of the sensitivity and specificity. This provides amoremeaningful
performance metric for groups of unequal sizes.

Single-modality classification results
A random forest classifier was applied to the feature data from

each of the four modalities independently, and the single-modality
classification results obtained are presented in Table 3.

Before performing classification experiments, the number of trees
grown in each forest, t, and the number of features randomly selected
at each tree node, d, had to be chosen. We used t=5000 for all the ex-
periments that follow, since stable estimates of the out-of-bag classi-
fication error were consistently observed for t≳1000. We used
d ¼

ffiffiffiffi
D

p
for all experiments, following the recommendation of Liaw

and Wiener (2002). The value of d was also consistently observed to
have little effect on the out-of-bag classification error estimate.

As described in the Random forests for classification section, esti-
mates of the relative importance of the features for classification may
Table 2
Summarised biological and genetic information for the study population. CSF measures
are expressed as mean±std. dev., and genetic information is expressed as the propor-
tion of each diagnostic group possessing each of the five ApoE allele pairs.

CSF measures (pg/mL) ApoE genotype (%)

Aβ tau ptau �3, �3 �3, �4 �4, �4 �2, �3 �2, �4

AD 141±43 127±64 46±24 24 41 30 0 5
pMCI 152±47 96±41 37±12 41 41 18 0 0
sMCI 167±55 105±81 35±22 39 39 12 10 0
HC 208±56 69±28 26±16 48 23 0 26 3

http://adni.loni.ucla.edu
http://www.fmrib.ox.ac.uk/fsl
http://www.doc.ic.ac.uk/dr/software
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Table 3
Single-modality classification accuracy (acc.), balanced accuracy (bacc.), sensitivity (sens.)
and specificity (spec.) based on the application of a random forest classifier to the original
imaging and biological feature data. Results are expressed as mean (standard error).

CSF MRI FDG-PET Genetic

AD/HC Acc. (%) 76.5 (0.8) 81.6 (0.8) 86.0 (0.7) 72.6 (0.9)
Bacc. (%) 76.8 (1.3) 81.8 (1.3) 86.0 (1.2) 72.7 (1.3)
Sens. (%) 73.0 (1.3) 79.8 (1.3) 86.8 (1.1) 71.3 (1.3)
Spec. (%) 80.5 (1.3) 83.8 (1.3) 85.1 (1.3) 74.1 (1.4)

MCI/HC Acc. (%) 63.1 (0.8) 66.9 (0.9) 66.5 (0.8) 73.8 (0.5)
Bacc. (%) 63.8 (1.4) 68.9 (1.3) 66.9 (1.3) 60.7 (0.9)
Sens. (%) 62.0 (1.1) 63.7 (1.2) 65.7 (1.1) 94.7 (0.5)
Spec. (%) 65.5 (1.7) 74.0 (1.4) 68.1 (1.5) 26.6 (1.2)

pMCI/sMCI Acc. (%) 52.9 (1.0) 55.1 (1.0) 52.6 (1.0) 47.3 (0.9)
Bacc. (%) 53.5 (1.6) 55.5 (1.7) 53.1 (1.7) 42.4 (2.4)
Sens. (%) 58.1 (1.6) 59.1 (1.8) 57.4 (2.0) 32.1 (2.1)
Spec. (%) 48.8 (1.5) 51.9 (1.6) 48.8 (1.5) 52.6 (2.7)
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be extracted from the random forest. Feature importance for the two
imaging modalities are shown in Fig. 3. The most important features
for MRI include volumes of the hippocampus, amygdala, and other
medial temporal lobe structures. The most important features for
FDG-PET include signal intensities of voxels located in the posterior
cingulate gyrus, parietal lobe, posterior temporal lobe, and around
the hippocampus.

Single-modality similarity-based classification results
The random forest classifiers described in the Single-modality

classification results sectionwere used to derive pairwise similaritymea-
sures for each of the four modalities, as described in the Manifold
learning based on random forest similarities section. Examples of the
similarity matrices are shown in Fig. 4.

MDS was applied to each similarity matrix, and a goodness-of-fit
value of 90% was used to determine an appropriate dimensionality for
the resulting embeddings. A random forest classifier was then applied
to the embedded feature data from each of the fourmodalities indepen-
dently. The single-modality classification results obtained are presented
in Table 4, along with the dimensionality of each embedding.

No consistent differences are observed between the balanced ac-
curacies based on the embedded feature data shown in Table 4, and
those based on the original feature data shown in Table 3.

Multi-modality similarity-based classification results
MDSwas applied to the joint similarity matrix constructed using in-

formation from all four modalities, and a goodness-of-fit value of 90%
was again used to determine an appropriate dimensionality for the
resulting embedding. A random forest classifier was applied to the em-
bedded feature data, and the multi-modality classification results
obtained are presented in Table 5. The balanced accuracies based on
multi-modality classification are significantly (pb0.01) higher than
those based on any individual modality for both the AD/HC and MCI/
Fig. 3. Feature importance for discriminating between the three clinical group pairs using r
importance is superimposed onto slices of a maximum probability brain atlas which has be
voxels are overlaid onto a MNI-space average MR image.
HCexperiments. For the pMCI/sMCI experiment, however, the balanced
accuracy based on multi-modality classification is not significantly dif-
ferent from that based on MRI information alone. Table 5 additionally
shows results based on the application of a random forest classifier to
the combined feature set generated by a simple concatenation of fea-
tures from all four modalities. These show no significant differences
from the results based on FDG-PET alone.

For each of the classification experiments, the distribution of mo-
dality weighting parameters selected over the 100 runs is illustrated
in Fig. 5.

Discussion and conclusion

We have presented a framework for multi-modality classification
based on pairwise similarity measures derived from random forests.
The similarities are used to construct amanifold representation from la-
belled training data and then to infer the clinical labels of test data
mapped into this space. Random forests are used to derive similarity
measures in a supervisedmanner, with the aim of generatingmanifolds
that are optimal for the task of clinical group discrimination. The pro-
posed method facilitates the incorporation of multi-modality data,
since consistent similarities may be derived from several datasets, and
combined to generate an embedding that simultaneously encodes in-
formation from all features. Multi-modality classification may then be
performed using coordinates from this joint embedding. The applicabil-
ity of the method to a large and diverse dataset is demonstrated using
imaging and biological information from the ADNI study. This includes
FDG-PET and MR imaging data, CSF biomarker measures, and categori-
cal genetic information.

Classification based on the joint embedding constructed using infor-
mation from all fourmodalities is superior to the classification based on
any individual modality for comparisons between AD patients and HC,
as well as between MCI patients and HC. This finding is in agreement
with other recent studies (Hinrichs et al., 2011; Zhang et al., 2011),
and supports previous suggestions that there is some complementary
information between modalities which can be exploited to produce
more powerful combined classifiers (Landau et al., 2010; Walhovd et
al., 2010). Classification performance is commonly reported in terms
of accuracy, but here we perform statistical comparisons between ex-
periments based on the balanced accuracy. This provides a more mean-
ingful performance metric for groups of unequal sizes. In terms of
accuracy, we achieve 89% classification between AD patients and HC,
and 75% between MCI patients and HC.

Direct comparisons with existing work are complicated by factors
such as the inclusion of different subjects and modalities, as well as
the use of different methods for feature extraction and cross-
validation. In assessing the proposed framework, we consider compar-
isons between the single- and multi-modality classification perfor-
mance more important, since these are based on the same method,
data, and processing pipeline. Our multi-modality classification results
egion-based MRI (top), and voxel-based FDG-PET (bottom). For MRI, regional feature
en masked in the same way as the anatomical segmentations. For FDG-PET, important
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Fig. 4. Similarity matrices for each of the four modalities for the AD/HC experiment. Matrices are symmetric, and each entry represents the similarity between a pair of subjects
based on the input feature data.
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are, however, comparable with those reported in other recent studies
based on ADNI data. Zhang et al. (2011) combine MRI, FDG-PET and
CSF data to achieve classification accuracies of 93% between AD patients
and HC, and 76% between MCI patients and HC. Hinrichs et al. (2011)
combineMRI, FDG-PET, CSF, genetic and cognitive data to achieve an ac-
curacy of 92% between AD patients and HC. Both studies employ
multi-kernel classifiers based on support vector machines, which are
relatively well-established in the field (Weiner et al., 2012). Random
forests have not been extensively applied in neuroimaging research, al-
though they are becoming more widely used for applications including
classification (Chincarini et al., 2011; Hope et al., 2008) and segmenta-
tion (Geremia et al., 2011; Iglesias et al., 2011). Classification of neuro-
degenerative disease based on the combination of imaging and
non-imaging information is therefore a new application for random for-
ests, and we are encouraged by the fact that our results are comparable
with those of more established techniques.

The ability of random forests to extract consistent pairwise similarity
measures for multiple modalities facilitates the combination of different
types of feature data. We demonstrate this using datasets in which the
number of features differs betweenmodalities by several orders ofmag-
nitude. A simple concatenation of all featureswas shownnot to optimal-
ly combine these data (Table 5), since the high-dimensional FDG-PET
features dominate the results.

In a previous work (Gray et al., 2011), we obtained comparable
multi-modality classification results using only information extracted
from the two neuroimaging modalities (accuracies of 90% for AD/HC,
and 76% for MCI/HC). The lack of improvement over these previously
reported results is likely to be attributable to the considerable reduction
in size of the subject group as a result of our requirement for CSF bio-
marker information. The subject group for this study is approximately
half the size of that used in Gray et al. (2011). The present work addi-
tionally employs a more robust form of cross-validation, using a
Table 4
Single-modality classification accuracy (acc.), balanced accuracy (bacc.) sensitivity (sens.)
and specificity (spec.) based on the application of a random forest classifier to the embed-
ded imaging and biological feature data. Results are expressed as mean (standard error).
The mean dimensionality of each embedding (k) is also shown.

CSF MRI FDG-PET Genetic

AD/HC Acc. (%) 76.1 (0.8) 82.5 (0.7) 86.4 (0.7) 72.6 (0.9)
Bacc. (%) 76.3 (1.3) 82.1 (1.4) 86.5 (1.2) 72.7 (1.3)
Sens. (%) 72.8 (1.3) 88.6 (1.2) 85.8 (1.2) 71.3 (1.3)
Spec. (%) 79.8 (1.4) 75.6 (1.5) 87.1 (1.3) 74.1 (1.4)
k 13 22 9 2

MCI/HC Acc. (%) 61.7 (0.8) 67.3 (1.0) 53.5 (0.7) 73.8 (0.5)
Bacc. (%) 61.7 (1.3) 69.1 (1.4) 60.2 (1.2) 60.7 (0.9)
Sens. (%) 61.6 (1.1) 64.3 (1.3) 42.3 (1.1) 94.7 (0.5)
Spec. (%) 61.8 (1.5) 73.9 (1.4) 78.0 (1.3) 26.6 (1.2)
k 25 47 35 2

pMCI/sMCI Acc. (%) 52.1 (1.0) 58.4 (1.0) 53.0 (1.0) 43.5 (0.9)
Bacc. (%) 52.7 (1.7) 58.3 (1.7) 52.8 (1.7) 41.2 (2.4)
Sens. (%) 57.9 (1.6) 56.9 (1.6) 50.6 (1.8) 27.4 (2.0)
Spec. (%) 47.5 (1.7) 59.7 (1.8) 54.9 (1.6) 55.0 (2.7)
k 21 38 35 1
stratified repeated random sampling approach, as opposed to the single
round of ten-fold cross-validation employed in Gray et al. (2011).

In the context of a neuroimaging application, estimates of the im-
portance of the features for classification are valuable because this al-
lows assessment of whether the features that contribute most to the
classifier correspond to regions or structures with a biologically plausi-
ble connection to pathology. In this work, the most important features
for discriminating between clinical groups correspond with those
known to be visibly affected in AD on both FDG-PET and structural
MR imaging (Hampel et al., 2008; Patwardhan et al., 2004). Important
features for distinguishing between AD patients and HC are more local-
ised to affected areas, with the more challenging distinctions between
MCI patients and HC, or pMCI and sMCI patients, requiring features
spread across a larger part of the brain. The motivation for extracting
region-based features from the MR images and voxel-based features
from the FDG-PET images was to demonstrate that these two different
types of imaging features could be readily combined using the proposed
method.

The lack of significant difference between classification performance
based on the original feature data and that based on the embedding co-
ordinates for each individual modality is expected, since a random for-
est is already a nonlinear classifier. However, a difference is observed for
the comparison between MCI patients and HC based on the voxel-wise
FDG-PET features. This may be due to the inhomogeneity of the MCI
group, which comprises both pMCI and sMCI patients. It is possible
that the high-dimensional voxel-based FDG-PET features are sensitive
to differences in the pattern of glucose metabolism between these
two groups, resulting in a reduced classification performance based on
the associated embedding coordinates.

Random forests are ensemble-based classifiers that are often applied
to high-dimensional datasets. In this work, random forests are also ap-
plied to low-dimensional biological data so that consistent pairwise
Table 5
Multi-modality classification accuracy (acc.), balanced accuracy (bacc.) sensitivity (sens.)
and specificity (spec.) based on the application of a random forest classifier to the jointly
embedded imaging and biological feature data, as well as the concatenated set of all fea-
tures. Results are expressed as mean (standard error). The mean dimensionality of each
embedding (k) is also shown.

Combined embedding Concatenated features

AD/HC Acc. (%) 89.0 (0.7) 86.2 (0.7)
Bacc. (%) 89.0 (1.2) 87.1 (1.1)
Sens. (%) 87.9 (1.2) 85.1 (1.4)
Spec. (%) 90.0 (1.1) 86.1 (1.3)
k 18 –

MCI/HC Acc. (%) 74.6 (0.8) 66.3 (0.8)
Bacc. (%) 72.7 (0.8) 65.3 (1.1)
Sens. (%) 77.5 (1.0) 68.5 (1.5)
Spec. (%) 67.9 (1.7) 66.9 (1.3)
k 20 –

pMCI/sMCI Acc. (%) 58.0 (0.9) 53.0 (1.1)
Bacc. (%) 57.9 (1.7) 57.3 (1.9)
Sens. (%) 57.1 (1.8) 49.6 (1.4)
Spec. (%) 58.7 (1.5) 53.5 (1.7)
k 29 –
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Fig. 5. Cobweb plots showing the distribution of parameters selected over the 100 leave-25%-out runs for all three classification experiments. The four spokes of each plot represent
the four modalities, and each coloured line connecting the four spokes represents a set of parameter values. The colour and weight of each line represents the percentage of runs in
which the associated parameter set was selected.
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similarity measures may be obtained for all modalities. In the case of a
single feature, such as the categorical genetic information, a random
forest reduces to bootstrap aggregation.

Visualisation of the parameters selected to combine similarities for
multi-modality classification (Fig. 5) provides some interesting insights
into the relationships among themodalities. Thefigure indicates the op-
timum way in which to combine MRI, FDG-PET, CSF and genetic infor-
mation within the framework described. For distinguishing between
AD patients andHC, for example, it appears that FDG-PET andMR imag-
ing features provide the most complementary information. For
distinguishing MCI patients from HC, genetic information appears to
have a relatively high importance. However, these indications may
not necessarily have a direct biological interpretation, and are likely
not sufficient to draw any firm conclusions about the relative impor-
tance of the four modalities. The optimum modality weightings for
distinguishing between AD patients and HC are more stable than for
the other two experiments. The weighting parameters selected for
distinguishing MCI patients from HC maybe more variable because the
heterogeneity of the MCI group makes their selection dependent on
the proportions of pMCI and sMCI patients in the training set. The se-
lected modality weightings are not equal for any experiment,
supporting the need to optimise the relative contributions of the four
modalities for classification. The figure suggests an interesting avenue
for further research, in that estimates of inter-modality correlations
could help to determine the amount of complementary information be-
tween them. This could facilitate decisions on how to acquire the max-
imum amount of diagnostically relevant information for a patient using
a minimum number of assessments.

The classification performance between pMCI and sMCI patients is
not significantly improved by combining multi-modality information
in this study. Other studies which apply multi-modality classification
to this challenging problem have incorporated longitudinal informa-
tion to improve performance (Hinrichs et al., 2011; Zhang et al.,
2012). Our previous work based on FDG-PET (Gray et al., 2012) has
also shown that incorporating longitudinal information can be bene-
ficial to improve the ability to distinguish between these two groups.
This will be an important issue to address in the future. It is important
to consider, however, that progression fromMCI to AD occurs at a rate
of 10–15% per year (Petersen et al., 1999), with up to 80% of MCI pa-
tients developing AD over a six year period (Petersen, 2004). Longer
clinical follow-up is therefore required to properly assess the utility
of any classification method in separating pMCI from sMCI patients.
This may be made possible by the continuation of the ADNI study in
the form of ADNI-GO and ADNI-2. Further information about these
studies is available via the ADNI website (http://adni.loni.ucla.edu/
about/about-the-study/).

We have identified several areas for further research. Methodologi-
cally, the approach is generalisable, in that the manifold learning step
could be performed using an alternative technique, and similarities
could be combined using more sophisticated formulae. We applied
MDS for manifold learning in this work because its application to
random forest-derived similarities is straightforward, and relatively
common in the literature (Hastie et al., 2011). However, MDS may not
be the optimal embedding approach, and there is potential to improve
the performance of this step by pursuing a thorough exploration of al-
ternative techniques. Similarly, we chose to additively combine similar-
ity matrices for simplicity, and there is potential for improvement by
incorporating a more sophisticated formula. Random forest classifiers
extend naturally to multi-class problems, and the framework described
here could be applied to distinguish betweenmultiple patient groups in
the future. Exploration of themulti-class settingwould better represent
a real-world clinical scenario, including patients with other forms of de-
mentia. In addition, the implementation of random forests used in this
work could be modified to produce uncertainty information about the
predicted diagnostic labels. This may be more useful to clinicians than
a simple binary prediction, and could be achieved by having each leaf
node store a probabilistic distribution of labels, rather than a point esti-
mate. Criminisi et al. (2012), for example, describes this and other ex-
tensions to the original random forests algorithm, and presents a
unified model of random decision forests for classification, regression,
density estimation, manifold learning, and semi-supervised learning.
Further investigations into different data fusion strategies may also be
interesting. Although the feature level fusion approach proposed in
thiswork can capture interdependencies betweenmodalities, the appli-
cation of a data level fusion technique to the neuroimaging data may be
advantageous in terms of capturing local inter-modality correlations.
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Appendix A. The Alzheimer's Disease Neuroimaging Initiative

The ADNI was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharmaceuti-
cal companies and non-profit organisations, as a $60 million, five-year
public–private partnership. Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials. The Principal
Investigator of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California-San Francisco. ADNI is the result of
efforts of many co-investigators from a broad range of academic institu-
tions and private corporations. Subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of ADNI was to re-
cruit approximately 200 cognitively normal older individuals to be
followed for three years, 400 MCI patients to be followed for three
years, and 200 early AD patients to be followed for two years. Further
up-to-date information is available on the ADNI information website
(http://www.adni-info.org).

Appendix B. Exclusions

In this work, we use imaging and biological data from 147 ADNI
participants. These represent all participants for whom ApoE geno-
type information and baseline 1.5 T MRI, FDG-PET and CSF measures
of Aβ, tau and phosphorylated tau were available, subject to the fol-
lowing exclusions. FDG-PET images acquired using either the Sie-
mens HRRT or BioGraph HiRez scanners were excluded due to
differences in the pattern of FDG metabolism that were discovered
during the ADNI quality control process. Further information is avail-
able on the ADNI PET Core website (http://www.loni.ucla.edu/twiki/
bin/view/ADNI/ADNIPETCore). A small number of subjects (n=14)
whose imaging data could not be processed as required, or whose di-
agnosis did not clearly fall into one of the four diagnostic groups (AD,
pMCI, sMCI, HC), were also excluded. ADNI subject identifiers for
these participants are provided as supplementary material, along
with more detailed reasons for their exclusion.

Appendix C. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.09.065.
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