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Foreword

We are grateful to the authors for inviting us to comment on the evolution of random
decision forests. We will begin by recounting our participation in the history (and
hope that the evoked memories are not randomized), continue with the recent and
dramatic advances in both research and scholarship reported in the book, and finish
with some speculative remarks.

For us, the story starts in the Spring of 1994 when we were failing to accurately
classify handwritten digits using a decision tree. We were pretty confident that the
features, which posed questions about the spatial relationship among local patterns,
were discriminating. But we could not ask nearly enough of them and the best classi-
fication rate was just above 90 %. The NIST dataset had about 6,000 training images
per digit, but as anybody knows who has induced a decision tree from data, the sam-
ple size goes down fast and estimation errors take over. So we could not ask more
than say ten questions along any branch. We tried the recipes for pruning in [45] and
elsewhere, and other ways to mitigate over-fitting, but no amount of fiddling made
much of a difference.

Although building multiple trees was the “obvious” thing to do, it hadn’t occurred
to us until then. The first effort, which involved making ten trees by dividing the pool
of questions among the trees, worked splendidly and lifted us well above 95 %. We
sensed a breakthrough. Subsequently, we explored different randomization proce-
dures and rather quickly settled on generating a small random sample of the question
pool at every node of every tree, eventually exceeding 99 % accuracy with a forest
of many trees.

The features were binary queries about the relative locations of local features and
hence did not require any normalization or preprocessing of the image. The space
of relational graphs is very large and provided a very rich source of linked queries.
Each tree probed some aspects of an essentially infinite graph of relationships, with
each new question refining the accumulated structure. In this way, growing the trees
provided a greedy mechanism to explore this space of representations. We also ex-
plored clustering shape space by growing generic trees with unlabeled data [5], as
well as initially growing trees with a small number of classes and then reestimat-
ing leaf node distributions and possibly deepening the trees with additional data
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viii Foreword

from new classes. The work on trees for density estimation and manifold learning
described in this book develops these ideas in multiple, fascinating directions.

In October 1994 we both went to a workshop on statistics and information the-
ory [169], where we met Leo Breiman. One of us (DG) spoke about “randomized
trees” at the workshop; this was the name we used in a technical report [4]. At the
workshop, and continuing over dinner, we discussed trees with Leo, who described
“bagging” (re-sampling the training set). We were all excited about advancing in-
ductive learning with randomized classifiers. Soon after we became aware of two
closely related lines of research. One was boosting, introduced earlier by Freund
and Shapire. The other was the work of Ho [165], also published in the mid-1990s,
which independently introduced a variation on randomization. In 1999 DG spent
time with Leo at another conference [298] discussing the tradeoffs between single-
tree accuracy and tree-to-tree correlation as the degree of randomness was varied.

From our perspective the source of success of both boosting and randomization
was the ability to create moderately accurate trees that are weakly correlated condi-
tional on the class. Boosting achieves this through the increased weights on the mis-
classified training samples, and is largely insensitive to the particular re-weighting
protocol. Randomization achieves this through sparse sampling from a large space
of queries. In fact, both methods effectively sample the trees from some distribu-
tion on the space of trees; randomized trees do this explicitly and boosting in the
limit cycle of a deterministic tree-generating process (see the discussion [113] of
Breiman’s 1997 paper on ARCing). By the way, back in 1994 we had speculated
with Leo that bagging might be too stable, i.e. the distribution over trees resulting
from mere re-sampling of the data might be too concentrated. With well-separated
classes boosting can achieve lower error rates, but there is a risk of over-fitting;
as discussed in [3], a combination of boosting and randomization is effective with
multiple classes.

Random forests had very strong competition during the nineties from support
vector machines. Whereas in practice the results on standard problems are about the
same, SVMs had the appeal of a clean optimization framework, well-understood al-
gorithms and an array of theoretical results. More recently, random forests have be-
come popular in computational genomics, probably due to the relative transparency
of the decision rules. Random forests have two other important advantages: speed
and minimal storage. Nonlinear SVMs require storing large numbers of training
samples, and computing large numbers of inner products. In contrast, it is hard to
find something more efficient than storing and answering a series of simple ques-
tions.

This brings us to recent applications of decision and regression forests. Surely
the best known is now the Kinect skeleton tracker; it is impressive how well simple
depth-based comparison questions work. The Kinect solution is particularly inter-
esting in that it synthesizes randomization with relational shape queries, the gen-
eralized Hough transform and shape context, which has proven very powerful in
shape recognition. The main problem with the original formulation of shape context
in [24] was the intense computation; exploring the neighborhood of a pixel using
randomized trees provides a very efficient alternative. Also related is the application
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of regression forests to anatomy detection in 3D computed tomography (CT) im-
ages; using a form of generalized Hough transform that is trained with a predictive
machine such as random forests opens up many interesting possibilities. The many
other applications presented in this book further and convincingly demonstrate that
sequential, adaptive learning and testing can provide a unifying framework for many
of the major tasks of modern computational learning.

Looking ahead, we hope these efficient and versatile tools will spread into more
applications. Many theoretical questions also remain open, such as determining
conditions under which randomized forests really provide an advantage, as well
as guidelines for selecting parameters such as tree depth, forest size and sampling
density. Finally, whereas a decision forest efficiently integrates evidence by ask-
ing a great many questions in total, it still does not capture the full discriminating
power of “20 questions” because the “line of reasoning” is broken with each new
tree. In principle a single tree can develop a long series of linked questions which
continue building on each other, progressing systematically from coarse to fine and
exploring some aspect of the object under study in depth. For example, in computer
vision, one might need 100 questions to accumulate a detailed understanding about
a complex event in the scene involving multiple agents and actions. However, this
is impossible in practice with current methodology: how would one store such a
deep tree even if there was enough time and data to learn it or a model under which
probabilities could be updated and new queries scored? Perhaps the answer is online
construction. After all, at run time (e.g. during scene parsing), only one branch of
each tree is traversed—the one dictated by the data being processed. Consequently,
online learning might be feasible in some cases; a tracking example, which does not
scale up to the complex problems treated in this book, was explored in [123]. Going
further will require learning how to maintain a probability distribution over states of
interest conditional on all the accumulated evidence.

Yali Amit
Donald Geman

Baltimore, USA



Preface

This book discusses the theoretical underpinnings of decision forests1 as well as
their practical applications in many automatic image analysis tasks typical of com-
puter vision and medical image analysis.

Decision forests have recently become an indispensable tool for automatic image
analysis, as demonstrated by the vast literature on the subject. This book attempts to
organize the existing literature within a shared, flexible forest model that is capable
of addressing a large and diverse set of image analysis tasks. The versatility of deci-
sion forests is also reflected in the provided research code: a compact, flexible and
user friendly software library aimed at helping the reader to experiment with forests
in a hands-on manner.

This book is directed at both students who wish to learn the basics of decision
forests, more established researchers who wish to become more familiar with forest-
based learning, and finally practitioners who wish to explore modern and efficient
image analysis techniques. The book is divided into three parts:

• Part I presents our coherent model of forests, its theoretical foundations, and its
applications to various tasks such as classification, regression, density estimation,
manifold learning and semi-supervised classification.

• Part II contains a number of invited chapters that demonstrate the application of
forests to practical tasks such as pedestrian tracking, human body pose estimation,
pixel-wise semantic segmentation of images and videos, automatic parsing of
medical 3D scans, and detection and delineation of brain lesions.

• Part III discusses practical implementation details, describes the provided soft-
ware library, and presents concluding remarks.

We truly hope that this book can serve as a springboard to further exciting re-
search in automatic image and video understanding.

Antonio Criminisi
Jamie Shotton

Cambridge, UK

1Throughout the book we use the terms “random forests”, “randomized trees”, “decision forests”
or “random decision forests” interchangeably.
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Chapter 3
Introduction: The Abstract Forest Model

A. Criminisi and J. Shotton

Problems related to the automatic or semi-automatic analysis of complex data such
as photographs, videos, medical scans, text or genomic data can all be categorized
into a relatively small set of prototypical machine learning tasks. For instance:

• Recognizing the type (or category) of a scene captured in a photograph can be
cast as a classification task, where the desired output is a discrete, categorical
label (e.g. a beach scene, a cityscape, indoor, outdoor).

• Predicting the price of a house as a function of its distance from a good school
may be thought of as a regression problem. In this case the output is a continuous
variable.

• Detecting abnormalities in a medical scan can be achieved by evaluating the im-
age under a probability density function learned from scans of healthy individuals.

• Correlating the size and shape of some key brain structures in magnetic resonance
images with a patient’s age and health level may be cast as manifold learning.

• Interactive image segmentation may be thought of as a semi-supervised problem,
where the user’s brush strokes define labeled data and the rest of image pixels
provide already available unlabeled data.

• Learning a general rule for detecting tumors in images using minimal amount of
manual annotations is an active learning problem, where expensive expert anno-
tations can be optimally acquired in the most economical fashion.

The popularity of decision forests is mostly due to their recent success in clas-
sification tasks. However, forests are a more general tool which can be applied to
many additional problems. This chapter presents a unified model of decision forests
which can be used to tackle all the common learning tasks outlined above: classifi-
cation, regression, density estimation, manifold learning, semi-supervised learning
and active learning. The unification we present, yields both theoretical and practical
advantages. In fact, we show how multiple prototypical machine learning problems

A. Criminisi (B) · J. Shotton
Microsoft Research Ltd., 7 J.J. Thomson Avenue, Cambridge CB3 0FB, UK

A. Criminisi, J. Shotton (eds.), Decision Forests for Computer Vision and
Medical Image Analysis, Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-4929-3_3, © Springer-Verlag London 2013
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8 A. Criminisi and J. Shotton

can all be mapped onto the same general model by means of different parameteriza-
tions. As a result, properties of the general framework are inherited by the specific
instantiations. The major practical advantage of such unification is that one can im-
plement and optimize the associated inference algorithms only once and then use
them, with relatively small modifications, in many applications. Such flexibility is
demonstrated in the software library presented in Part III which can be used to un-
dertake the exercises from the various chapters in Part I.

This chapter presents the model definitions and components in an abstract man-
ner. Some brief concrete examples for different tasks are presented here, with fur-
ther details in the subsequent chapters. Before delving into the model description
we first provide an intuitive explanation of the basic principles of decision trees.
Then we introduce the general mathematical notation that will be used throughout
the manuscript. Finally, we extend the tree formalism to the decision forest model.

3.1 Decision Tree Basics

Decision trees have been around for a number of years [45, 302]. Their recent revival
is mostly due to the discovery that higher accuracy on previously unseen data, a phe-
nomenon known as generalization [4, 5, 44, 165], can be achieved by ensembles of
slightly different trees. Ensembles of trees will be discussed extensively throughout
this document. But let us first focus on individual trees.

3.1.1 Tree Data Structure

A tree is a special type of graph. It is a data structure made of a collection of nodes
and edges organized in a hierarchical fashion (Fig. 3.1a). Nodes are divided into
internal (or split) nodes and terminal (or leaf) nodes. We denote internal nodes with
circles and terminal ones with squares. All nodes (except the root) have exactly one
incoming edge. In contrast to general graphs a tree cannot contain loops. In this book
we focus only on binary trees where each internal node has exactly two outgoing
edges.1

3.1.2 Decision Tree

One can think of trying to solve a complex problem by running a series of sim-
pler tests. For instance, when trying to figure out if a patient has cancer one can

1In this work we focus only on binary decision trees because they are simpler than n-ary ones, and
any n-ary tree can be transformed into an equivalent binary tree. In our experiments we have not
found big accuracy differences when using non-binary trees.
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Fig. 3.1 Decision tree. (a) A tree is a set of nodes and edges organized in a hierarchical fashion.
A tree is a graph with no loops. Internal nodes are denoted with circles and terminal nodes with
squares. (b) A decision tree is a tree where each internal node stores a split (or test) function to
be applied to the incoming data. Each leaf stores the final answer (predictor). Here we show an
illustrative decision tree used to figure out whether a photo represents an indoor or outdoor scene

ask whether she smokes, or has a balanced diet; the doctor can run a blood test;
etc. In a decision tree this set of diagnostic tests is organized hierarchically in a
tree structure. For a given input object, a decision tree estimates an unknown prop-
erty of the object by asking successive questions about its known properties. Which
question to ask next depends on the answer of the previous question and this re-
lationship is represented graphically as a path through the tree which the object
follows. The decision is then made based on the terminal node reached by the input
object.

For example, imagine we have a photograph and we need to construct an algo-
rithm for figuring out automatically whether it represents an indoor or an outdoor
scene. We have no other information but the image pixels. We can start by looking
at the top part of the image and ask whether it is blue or not. If it is then that might
be the sky. Based on this, we ask another question, for instance whether the bottom
part is also blue. If it is not then our belief that this photograph displays an outdoor
scene increases. However, if the bottom part of the photo is also blue then perhaps
it is an indoor scene and we are looking at a blue wall.

All these questions/tests help our decision making move towards the correct re-
gion of the decision space. Also, the more questions asked, the higher the confidence
we should expect in the response. The tests can be represented hierarchically via a
decision tree structure. In a decision tree, each internal node is associated with one
such question. In our example, we can think of the image as being injected at the
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Fig. 3.2 Basic notation. (a) Input data are represented as a collection of points in the
d-dimensional space defined by their feature responses (2D in this example). (b) A decision tree is
a hierarchical structure of connected nodes. During testing, a split (internal) node applies a test to
the input data v and sends it to the appropriate child. The process is repeated until a leaf (terminal)
node is reached (beige path). (c) Training a decision tree involves sending the entire training set
S0 into the tree and optimizing the parameters of the split nodes so as to optimize a chosen energy
function. See text for details

root node, and a test being applied to it (see Fig. 3.1b). Based on the result of this
first test the whole image data is then sent to the left or right child. There, a new test
is applied and so on until the image reaches a leaf. The leaf contains the most prob-
able answer based on the answers to all the questions asked during the tree descent
(e.g. “outdoor”). Therefore, key to the good functioning of a decision tree is to es-
tablish: (i) the tests associated with each internal node and (ii) the decision-making
predictors associated with each leaf.

A decision tree can also be thought of as a technique for splitting complex prob-
lems into a set of simpler ones. It is a hierarchical piece-wise model. Its parameters
(the node tests, the leaves predictors, etc.) could be selected by hand for simple prob-
lems. In more complex problems (such as vision related ones) the tree parameters
and structure should be learned automatically from available training data.

Next we introduce some notation which will help us formalize these concepts.

3.2 Mathematical Notation and Basic Definitions

We now introduce several important concepts and their mathematical notation used
in this book.

3.2.1 Data Point and Features

A generic object, called a data point, is denoted by a vector v = (x1, x2, . . . , xd) ∈
R

d , where the components xi represent some attributes of the data point, called
features. See Fig. 3.2a for an illustration. These features may vary from application



3 Introduction 11

Fig. 3.3 Split and leaf nodes. (a) Split node (testing). A split node is associated with a weak
learner (or split function, or test function). (b) Split node (training). Training the parameters θ j of
node j involves optimizing a chosen objective function (maximizing the information gain I in this
example). (c) A leaf node is associated with a predictor model. For example, in classification we
may wish to estimate the conditional p(c|v) with c indicating a discrete class index

to application. For instance, in a computer vision application, v may correspond to
a pixel in an image and the xis represent the responses of a chosen filter bank at that
particular pixel.

The number of features naturally depends on the type of the data point as well as
the application. In theory, the dimensionality d of the feature space can be extremely
large, even infinite. In practice, often it is not possible, and further not necessary,
to extract all d dimensions of v ahead of time. Instead we extract only a small
portion of d on an as-needed basis. Let us formulate the features of interest that
are computed at any single time to be a subset selected from the set of all possible
features as φ(v) = (xφ1, xφ2 , . . . , xφd′ ) ∈ R

d ′
, where d ′ denotes the dimensionality

of the subspace and φi ∈ [1, d] denote the selected dimensions. In most applications,
d can be very large but the dimension d ′ of the subspace is much smaller d ′ � d ; in
many cases, d ′ is as small as 1 or 2.

3.2.2 Test Functions, Split Functions and Weak Learners

As explained above a decision tree is a set of tests that are hierarchically organized.
In this book we use the terms “split function”, “test function” and “weak learner”
interchangeably. Each node has a different associated test function. We formulate a
test function at a split node j as a function with binary outputs

h(v, θ j ) : Rd × T → {0,1}, (3.1)

where 0 and 1 can be interpreted as “false” and “true”, respectively, θ j ∈ T denote
the split parameters associated with the j th node, and T represents the space of all
split parameters. The data point v arriving at the split node is sent to its left or right
child node according to the result of the test function (see Fig. 3.3a).
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3.2.3 Training Points and Training Sets

The last definitions we introduce here are the training point and the training set.
A training point is a data point for which the attributes we are seeking for may be
known and used to compute tree parameters. In the example of the previous section
a training set would be a set of photos with associated “indoor” or “outdoor” labels.
Based on this definition, a training set, denoted by S0, is a collection of different
training data points.

In a supervised learning task a training point is a pair (v,y) where v is the in-
put data point (feature vector) and y here represents a generic, known label. In an
unsupervised training task the training points are represented only by their feature
response and there is no associated label.

When discussing trees it is convenient to think of subsets of training points as
being associated with different tree branches. For instance S1 denotes the subset
of training points reaching node 1 (we number nodes in breadth-first order starting
from 0 for the root; see Fig. 3.2c), and SL1 , SR1 denote the subsets going to the left and
to the right children of node 1, respectively. In binary trees the following properties
apply:

Sj = SLj ∪ SRj , SLj ∩ SRj = ∅, SLj = S2j+1, SRj = S2j+2 (3.2)

for each split node j .

3.3 Randomly Trained Decision Trees

At a high level, the functioning of decision trees can be separated into an ‘off-line’
phase (training) and an ‘on-line’ phase (testing). Here we describe these two phases
as well as the other components of random decision trees. We take a general ap-
proach and keep definitions and explanations at an abstract level. The subsequent
chapters will describe and analyze specific variants of these definitions for different
learning tasks.

3.3.1 Tree Testing (On-line Phase)

Given a previously unseen data point v a decision tree hierarchically applies a num-
ber of previously selected tests (see Fig. 3.2b). Note that the node tests have been
selected during training (explained later) and remain fixed during testing. Starting at
the root, each split node applies its associated test function h(· , ·) to v. Depending
on the result of this binary test, the data point v is sent to the left or right child. This
process is repeated until the data point reaches a leaf node. The leaf nodes contain a
predictor/estimator (e.g. a classifier or a regressor) which associates an output (e.g.
a class label or a continuous value) with the input v.
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3.3.2 Tree Training (Off-line Phase)

The split functions stored at the internal nodes are key for the functioning of the
tree. One may think of designing these functions manually. However, this approach
would only be possible for very simple problems. For more realistic problems the
test functions need to be learned automatically, from example data. Thus, the train-
ing phase takes care of selecting the type and parameters of the test function h(v, θ)

associated with each split node (indexed by j ) by optimizing a chosen objective
function defined on an available training set.2

In general, the optimization of the split functions proceeds in a greedy manner. At
each node j , depending on the subset of the incoming training set Sj we learn the
function that “best” splits Sj into SLj and SRj . As before, the symbols Sj ,SLj ,SRj de-
note the sets of training points before and after the split (see Fig. 3.2c and Fig. 3.3b).
This problem is formulated as the maximization of an objective function I at the j th
split node

θ j = arg max
θ∈T

I (Sj , θ). (3.3)

Typically this optimization is performed as a simple search over a discrete set of
samples of possible parameter settings θ (though see Chap. 19 for an alternative).

Given the set Sj and the split parameters θ , the corresponding left and right sets
are uniquely determined as

SLj (Sj , θ) = {
(v, ·) ∈ Sj | h(v, θ) = 0

}

SRj (Sj , θ) = {
(v, ·) ∈ Sj | h(v, θ) = 1

}
.

(3.4)

We use the notation (v, ·) as · can stand for either y for continuous labels used in
regression problems, or discrete labels c in classification problems.

The objective function I is then computed using those three sets as input. The
children sets SLj and SRj are functions of the parent set Sj and the splitting parame-
ters θ ; however, in the rest of the book we do not make this dependency explicit to
avoid cluttering the notation. The objective function I (Sj , θ) is of an abstract form
here. Its precise definition and the meaning of “best” depends on the task at hand
(e.g. supervised or unsupervised, continuous or categorical output). For instance, for
binary classification, the term “best” can be defined as splitting the training subset
Sj such that the resulting child nodes are as pure as possible, i.e. containing mostly
training points of a single class. In this case the objective function can, for instance,
be defined as a standard information gain. Precise definitions and more task-specific
details will be given in later chapters.

During training we also need to choose the tree structure (its size and shape).
Training starts at the root node, j = 0, where the optimum split parameters are found

2Throughout the book we use the terms “maximizing an objective function” or “minimizing an
energy” interchangeably.



14 A. Criminisi and J. Shotton

as described earlier. Thus, we construct two child nodes, each receiving a different
disjoint subset of the training set. This procedure is then applied recursively to all the
newly constructed nodes and the training phase continues until a stopping criterion
is met.

Tree Structure The structure of the tree depends on how and when we decide to
stop growing various branches of the tree. Diverse stopping criteria can be applied.
For example it is common to stop the tree when a maximum number of levels D has
been reached. Alternatively, one can impose a minimum value of the information
gain at the node, in other words we stop when the sought-for attributes of the training
points within the leaf node are similar to one another. Tree growing may also be
stopped when a node contains too few training points. Avoiding growing full trees3

has been demonstrated to have positive effects in terms of generalization [44]. In
this work we avoid further post-hoc operations such as tree pruning [154] to keep
the training process as simple as possible.

At the end of the training phase we obtain: (i) the (greedily) optimum weak
learners (split functions) associated with each node, (ii) a learned tree structure,
and (iii) a different set of training points at each leaf.

3.3.3 Weak Learner Models

The split functions play a crucial role both in training and testing. An early analysis
of the effect of split functions is found in [223]. Until now we have refrained from
defining a specific form for the split node models. In this section, we provide a
simple geometric parametrization and a few derived formulations, which will be
used throughout this book. We denote the parameters of the weak learner model
as θ = (φ,ψ,τ ) where the ‘filter’ (or ‘selector’) function φ = φ(v) selects some
features of choice out of the entire vector v; ψ defines the geometric primitive used
to separate the data (e.g. an axis-aligned hyperplane, an oblique hyperplane [158,
246, 410], or a general surface); and the parameter vector τ captures thresholds
for the inequalities used in the binary test. The optimization given in (3.3) is then
defined over all these three sets of parameters. Figure 3.4 illustrates a few possible
weak learner models, for example:

Linear Data Separation The first parametrization we define is the linear model

h(v, θ) = [
τ1 > φ(v) · ψ > τ2

]
, (3.5)

where [·] is the indicator function.4 For instance, in the 2D example in Fig. 3.4b
φ(v) = (x1 x2 1)	, and ψ ∈R

3 denotes a generic line in homogeneous coordinates.

3The term “full tree” here means a tree where each leaf contains only one training point.
4The indicator [·] returns 1 if the argument is true and 0 if it is false.
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Fig. 3.4 Example weak learners. In this illustration the colors attached to each data point
(circles) indicate different classes. (a) Axis-aligned hyperplane weak learner. (b) General ori-
ented hyperplane. (c) Quadratic surface (conic in 2D). For ease of visualization here we have
v = (x1 x2)

	 ∈ R
2 and φ(v) = (x1 x2 1)	 in homogeneous coordinates. In general, a data point v

may have a much higher dimensionality and φ(v) still a dimensionality ≤ 2

In (3.5) setting τ1 = ∞ or τ2 = −∞ corresponds to using a single-inequality test
function. Another special case of this weak learner model is one where the line ψ is
aligned with one of the axes of the feature space (e.g. ψ = (1 0 ψ3) or ψ = (0 1 ψ3),
as in Fig. 3.4a). Such axis-aligned weak learners are often used in the boosting
literature and they are referred to as decision stumps [389].

Please note that the axis-aligned case is over-parameterized in (3.5). We choose
this parametrization because it highlights the role of the geometric model ψ and it
generalizes to more complex cases. Also, in later chapters sometimes the dot product
in (3.5) is denoted f (v;φ,ψ) = φ(v) · ψ .

Non-linear Data Separation More complex weak learners are obtained by re-
placing hyperplanes with higher degree of freedom surfaces. For instance, in 2D
one could use conic sections as

h(v, θ) = [
τ1 > φ	(v) ψ φ(v) > τ2

]
(3.6)

with ψ ∈R
3×3 a matrix representing the conic section in homogeneous coordinates

(Fig. 3.4c).
Note that low-dimensional weak learners of this type can be used even for data

that originally reside in a very high dimensional space (d � 2). In fact, the selector
function φ can select a different, small set of features (e.g. just one or two) and they
can be different for different nodes.

Here we discuss simple weak learner models. But one may use more complex
split functions such as SVM, boosting, etc. [374, 410, 413]. However, care must
be taken in selecting the complexity of such function. In fact, as shown later, the
number of degrees of freedom of the weak learner influences heavily the forest
generalization properties.
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3.3.4 Energy Models

The objective function used during training is essential in constructing decision trees
that will perform the desired task. In fact, the result of the optimization problem
in (3.3) determines the parameters of the weak learners, which, in turn, determine
the path followed by a data point and thus its associated prediction. In summary,
through its influence on the choice of weak learners, the energy model determines
the prediction and estimation behavior of a decision tree.

Developing task-specific energy models is a very active area of research. In this
section we propose to use a generic definition of information gain as our abstract
objective function. Later chapters will implement different instantiations of such
function to deal with specific tasks such as classification, regression and density
estimation. The definition of such flexible energy function constitutes the “glue” of
this book as it allows us to employ essentially the same learning model to address
multiple, diverse tasks.

Entropy and Information Gain The tree training phase is driven by the statistics
of the training set. The basic building blocks of the training objective function are
the concepts of entropy and information gain. These concepts are usually discussed
in information theory or probability courses. Here we briefly explain them from the
point of view of the decision trees and illustrate them with toy examples in Figs. 3.5
and 3.6.

In information theory the information gain associated with a tree split node is
defined as the reduction in uncertainty achieved by splitting the training data arriving
at the node into multiple child subsets. Information gain is commonly defined as
follows:

I = H(S) −
∑

i∈{L,R}

|S i |
|S| H

(
S i

)
. (3.7)

Here the dataset S is split into two subsets SL and SR (here we focus on binary
trees). In the definition above H is the entropy, e.g. a measure of the uncertainty
associated with the random variable we wish to predict. In (3.7) | · | indicates cardi-
nality for set arguments. Weighting the entropy by the cardinality of the child sets
avoids splitting off children containing very few points.

Example 1 (Information gain for classification) Figure 3.5 illustrates a toy classi-
fication example. The graph in Fig. 3.5a shows a number of training points on a
2D space, where each coordinate denotes a feature value and the colors indicate
the known classes (four in this case). In this example our objective is to separate
different classes as much as possible. The aim of the training phase is to learn the
parameters that best split the training data. For instance, splitting the training data
horizontally (as shown in Fig. 3.5b) produces two sets of data. Each set now contains
points from three classes while before the split the dataset had all four classes. Thus,
if we use the children (rather than the parent node) we would have more chances of
correct prediction; we have reduced the uncertainty of prediction.
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Fig. 3.5 Information gain for non-parametric distributions over categorical variables. (a) Dataset
S before a split. (b) After a horizontal split. (c) After a vertical split. In this example the vertical
split produces purer class distributions in the two child nodes

This intuitive explanation can be formulated using the quantitative measure of
information gain in (3.7). For discrete probability distributions we use the Shannon
entropy (see also [268] for alternatives), defined as

H(S) = −
∑

c∈C
p(c) log

(
p(c)

)
, (3.8)

where S is the set of training points and c indicates the class label. The set of all
classes is denoted C, and p(c) indicates the empirical distribution extracted from
the training points within the set S . This distribution can be easily computed as just
a normalized histogram of the class labels. The empirical distribution over classes
in Fig. 3.5a is uniform since in this example we have exactly the same number of
points for each class (color). This corresponds to a large entropy for the training
set. When applying a horizontal split such as the one in Fig. 3.5b we see that the
empirical distributions of the resulting two sets are no longer uniform. The chil-
dren distributions are more pure, their entropy has decreased and their information
content increased. This improvement is reflected in the information gain.

In this example, the split has produced an information gain I = 0.4. However, the
vertical split shown in Fig. 3.5c separates the training set better, because the result-
ing children each contain only two colors (classes). This corresponds to lower child
entropies and a higher information gain (I = 0.69). This simple example shows
how we can use the information gain as a training objective function. Maximizing
the information gain helps select the split parameters which produce the highest
confidence (lowest uncertainty) in the final distributions. This concept is at the basis
of decision tree training.

Example 2 (Information gain for clustering) The previous example focused on dis-
crete, categorical distributions. But entropy and information gain can also be defined
for continuous-valued labels and continuous distributions. In fact, the definition of
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Fig. 3.6 Information gain for parametric densities over continuous variables. (a) Dataset S be-
fore a split. (b) After a horizontal split. (c) After a vertical split. A vertical split produces better
separation and a correspondingly higher information gain

the information gain remains the same (3.7), but this time the differential (continu-
ous) entropy is used in place of the Shannon entropy, as follows:

H(S) = −
∫

y∈Y
p(y) log

(
p(y)

)
dy. (3.9)

Here y is a continuous label of interest and p is the probability density function
estimated from the training points in the set S . From a practical point of view, in the
discrete case, the distribution p(c) was defined as the empirical distribution com-
puted from the training set. Similarly, in the continuous case the distribution p(y)

can be defined either using parametric distributions or non-parametric methods.
One of the most popular choices in various applications is to use Gaussian-based

models to approximate the density p(y) due to their simplicity. The differential
entropy of a d-variate Gaussian can be derived analytically as

H(S) = 1

2
log

(
(2πe)d

∣∣Λ(S)
∣∣). (3.10)

Figure 3.6 illustrates the role of the continuous information gain in training, with
another toy example. This time we wish to cluster similar points according to their
features (again, depicted as the coordinates in a 2D space). In this example the data
are unlabeled. Given an arbitrary input data point we wish the tree to predict its
associated cluster. In Fig. 3.6a we have a set S of training data points represented
in a continuous 2D space. Fitting a Gaussian to the entire initial set S produces the
density shown in blue, which has a high differential entropy. Splitting the data hor-
izontally (Fig. 3.6b) produces two largely overlapping and slightly smaller Gaus-
sians (in red and green). The large overlap indicates a suboptimal separation and
is associated with a relatively low information gain (I = 1.08). Splitting the data
points vertically (Fig. 3.6c) yields better separation, with peakier Gaussians and a
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correspondingly higher value of information gain (I = 2.43). The fact that the infor-
mation gain measure can be defined flexibly, for discrete or continuous distributions
and for labeled or unlabeled data points, is a useful property which is at the basis of
our unified forest model.

3.3.5 Leaf Prediction Models

The training phase is in charge of estimating “optimal” weak learners and tree struc-
tures. Furthermore, it also has to learn good prediction models to be stored at the
terminal nodes.

In the supervised case, after training, each leaf node remains associated with a
subset of (labeled) training data. During testing, a previously unseen point traverses
the tree until it reaches a leaf. Since the split nodes act on features, the input test
point is likely to end up in a leaf associated with training points which are all similar
to itself. Thus, it is reasonable to assume that the associated label must also be
similar to that of the training points in that leaf. This justifies using the label statistics
gathered in that leaf to predict the label associated with the input test point.

In the most general sense the leaf statistics can be captured using the conditional
distributions

p(c|v) or p(y|v), (3.11)

where c and y represent the categorical and continuous labels, respectively. v is
the data point that is being tested in the tree and the conditioning denotes the fact
that the distributions depend on the specific leaf node reached by the test point
(see Fig. 3.3c). Different leaf predictors can be used. For instance, a Maximum
A-Posteriori (MAP) estimate may be obtained as

c∗ = arg max
c

p(c|v) or y∗ = arg max
y

p(y|v) (3.12)

for the categorical and continuous cases, respectively. However, in general it is
preferable to keep the entire distribution around until the final moment where a
decision must be taken, rather than taking an early point estimate. This allows us to
reason about prediction uncertainty.

3.3.6 The Randomness Model

Randomness is injected into the trees during the training phase.5 Two of the most
popular ways of doing so are:

5Testing is instead almost always considered to be deterministic. Perhaps a more descriptive name
for forests would therefore be ‘randomly trained decision forests’.
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• random training set sampling [42, 44] (e.g. bagging), and
• randomized node optimization [4, 166].

3.3.6.1 Bagging

In [42, 44] bagged training was introduced as a way of reducing possible overfitting
and improving the generalization capabilities of random forests. The idea is to train
each tree in a forest on a different training subset, sampled at random from the same
labeled database. This strategy helps avoid specializing the selected parameters to a
single training set and has been shown to improve generalization. Another advantage
is that training is faster than having to use the entire labeled set. However, not being
able to use all available training data for all trees seems wasteful. An alternative way
of introducing randomness and reduce overfitting is described next.

3.3.6.2 Randomized Node Optimization (RNO)

In (3.3) at each node the optimization is done with respect to the entire parameter
space T . However, this has a major drawback: efficiency. For large dimensional
problems, the size of T can be extremely large. Therefore, optimizing (3.3) by
searching over T is not feasible in practice, nor desirable (for reasons that will
become clearer later). Instead, when training the j th node we only make available
a small random subset Tj ⊂ T of parameter values. Thus, under the randomness
model, training a tree is achieved by optimizing each split node j as

θ j = arg max
θ∈Tj

I (Sj , θ). (3.13)

Again, typically this maximization is performed as a simple search over the smaller,
discrete set Tj .

Note that in some cases we may have |T | = ∞. At this point it is convenient to
introduce a parameter ρ = |Tj |. The parameter ρ ∈ {1, . . . , |T |} controls the degree
of randomness in a tree and (usually) its value is fixed for all nodes. At the limit,
for ρ = |T | all the split nodes use all the information available and therefore there
is no randomness in the system. Vice versa, when ρ = 1 each split node take only
a single randomly chosen set of values for its parameter θ . Thus, there is no real
optimization and we get maximum randomness.

In practical applications, one may wish to randomize none, some, or all of the
parameters φ, ψ , and τ . For example, one might want to randomize the φ selec-
tor function parameters and the ψ parameters that define the orientation of a weak
learner hyperplane, but search over a predefined set of thresholds τ . Certain variants
of training in which particular choices of training parameters are randomized have
been called ‘totally randomized’ and ‘extremely randomized’ trees; see Chap. 10
for more details. Also, parameter values do not necessarily need be sampled from
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Fig. 3.7 Controlling the amount of randomness and tree correlation. (a) Large values of ρ cor-
respond to little randomness and thus large tree correlation. In this case the forest behaves very
much as if it was made of a single tree. (b) Small values of ρ correspond to large randomness in
the training process. Thus the forest component trees are all very different from one another

a uniform distribution; see Chap. 19. The interested reader is referred to [223] for
further models of randomness.

Bagging and randomized node optimization are not mutually exclusive and could
be used together. However, in this book we focus on the second alternative which:
(i) enables us to train trees on the entire training data, and (ii) yields margin-
maximization properties for the ensemble models (details in Chap. 4). On the other
hand, bagging yields greater training efficiency.

Alternative randomness models exist. For example, in [64, 89] the authors dis-
cuss different Bayesian decision tree models where a tree is thought of as a random
sample from a well defined tree prior distribution. A variety of different choices for
such prior are discussed, which control e.g. the shape and size of trees probabilisti-
cally. “Good” trees are generated via the Metropolis-Hastings algorithm [156].

Having discussed randomized decision trees we next describe how those compo-
nents are merged together to form decision forests.

3.4 Combining Trees into a Forest Ensemble

A random decision forest is an ensemble of randomly trained decision trees. The
key aspect of the forest model is the fact that its component trees are all randomly
different from one another. This leads to de-correlation between the individual tree
predictions and, in turn, results in improved generalization and robustness. The for-
est model is characterized by the same components as the decision trees. The family
of weak learners (test functions), energy model, the leaf predictors and the type of
randomness influence the prediction/estimation properties of the forests. Further-
more, the randomness parameter ρ controls not only the amount of randomness
within each tree but also the amount of correlation between different trees in the
forest. In fact, as illustrated in Fig. 3.7, when ρ = |T | all the trees will be identical
to one another, and as ρ decreases the trees become more decorrelated (different
from one another).

In a forest with T trees we use the variable t ∈ {1, . . . , T } to index each com-
ponent tree. All trees are trained independently (and possibly in parallel). During
testing, each test point v is simultaneously pushed through all trees (starting at the
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Fig. 3.8 Ensemble model. (a) The posteriors of four different regression trees (shown with dif-
ferent colors). Some correspond to higher confidence (peakier density curves) than others. (b) An
ensemble posterior p(y|v) obtained by averaging all tree posteriors. (c) The ensemble posterior
p(y|v) obtained as a product of all tree posteriors. Both in (b) and (c) the ensemble output is
influenced more by the more informative trees

root) until it reaches the corresponding leaves. Tree testing can also often be done
in parallel, thus achieving high computational efficiency on modern parallel CPU
or GPU hardware (see Chap. 21). Combining all tree predictions into a single for-
est prediction may be done by a simple averaging operation [44]. For instance, in
classification we have

p(c|v) = 1

T

T∑

t=1

pt(c|v), (3.14)

where pt(c|v) denotes the posterior distribution obtained by the t th tree. Alterna-
tively one could also multiply the tree outputs together (though the trees are not
statistically independent), that is,

p(c|v) = 1

Z

T∏

t=1

pt (c|v) (3.15)

with the partition function Z ensuring probabilistic normalization.
Figure 3.8 illustrates fusion of multiple tree outputs for a simple example where

the attribute we want to predict is the continuous variable y. Imagine that we have
trained a forest with T = 4 trees. For a test data point v we get the corresponding
tree posteriors pt(y|v) modeled here as Gaussians, with t ∈ {1, . . . ,4}. As illus-
trated, some trees produce peakier (more confident) predictions than others. Both
the averaging and the product operations produce combined distributions (shown in
black) which are heavily influenced by the most confident, most informative trees.
Therefore, such simple operations have the effect of selecting (softly) the more con-
fident trees out of the forest. This selection is carried out at a leaf-by-leaf level
and the more confident trees may be different for different leaves. Averaging many
tree posteriors also has the advantage of reducing the effect of possibly noisy tree
contributions. In general, the product based ensemble model produces sharper dis-
tributions [163] and may be less robust to noise. Alternative ensemble models are
possible, where for instance one may choose to select individual trees in a hard
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way. Also Chap. 9 discusses the use of a Naïve-Bayes strategy for combining tree
outputs.

3.4.1 Key Model Parameters

The decision forests, their construction and prediction abilities depend on the model
parameters. The parameters that most influence the behavior of a decision forest are:

• the maximum allowed tree depth D;
• the amount of randomness (controlled by ρ) and its type;
• the forest size T ;
• the choice of weak learner model;
• the training objective function;
• the choice of features in practical applications.

Those choices directly affect the forest predictive accuracy, the quality of its confi-
dence, its generalization and its computational efficiency.

For instance, several papers have pointed out how the testing accuracy increases
monotonically with the forest size T [78, 341, 413], how learning very deep trees
can lead to overfitting, as well as the importance of using very large amounts of
training data [343]. In his seminal work Breiman [44] has also shown the importance
of randomness and its effect on tree correlation. Additionally later chapters will
show how the choice of randomness model affects a forest’s generalization.

The choice of stopping criteria has a direct influence on the shape of the trees,
e.g. whether they are well balanced or not. In general, very unbalanced trees should
be avoided. At the limit they may become just chains of weak learners, with little
feature sharing [370] and thus little generalization. A less studied issue is how the
weak learners influence the forest’s accuracy and its estimated uncertainty. To this
end, later chapters will show the effect of the randomness parameter ρ on the for-
est behavior with some simple toy examples and compare the results with existing
alternatives. When training a forest it is important to visualize its trees as well as
other intermediate variables (e.g. the features and parameters chosen at each node),
to make sure the forest has the expected behavior.

3.5 Summary

This chapter has defined our generic decision forest model. In the following chap-
ters of Part I we discuss its specializations for the different tasks of interest. The
explanations will be accompanied by a number of synthetic examples in the hope of
increasing clarity and helping understand the forests’ general properties. In Part II
we then present many ways in which researchers around the world are employing
decision forests in diverse practical applications.



Chapter 4
Classification Forests

A. Criminisi and J. Shotton

This chapter discusses the most common use of decision forests, i.e. classification.
The goal here is to automatically associate an input data point v with a discrete class
c ∈ {ck}. Classification forests enjoy a number of useful properties:

• they naturally handle problems with more than two classes;
• they provide a probabilistic output;
• they can generalize well to previously unseen data;
• they are efficient thanks to a small set of tests that are applied to each data point,

and the ease in which forests can be implemented in parallel.

In addition to these known properties the work in [80] also shows that:

• under certain conditions classification forests exhibit margin-maximizing behav-
ior, and

• the quality of the posterior and associated confidence can be controlled via the
choice of the specific parameters.

We begin with an overview of general classification methods and then discuss a pos-
sible way of specializing the generic forest model presented in the previous chapter
for the classification task. A number of experiments on toy data is presented in order
to provide the reader with some basic intuition about the behavior of classification
forests. A small number of exercises is also provided to study the effect of various
forest parameters and help the reader familiarize with the available code.

4.1 Classification Algorithms in the Literature

Classification (of pixels, regions, or whole images) is at the heart of modern com-
puter vision and image understanding, as demonstrated by the large interest in the
PASCAL Visual Object Class (VOC) recognition challenge [100].
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One of the most widely used classification algorithms is the support vector ma-
chine (SVM) [380] whose popularity is mostly due to the fact that in binary classi-
fication problems (two target classes) it guarantees maximum margin separation. In
turn, this property yields good generalization with relatively little training data.

Another popular technique is boosting [112] which builds strong classifiers as
linear combination of many weak classifiers. A boosted classifier is trained itera-
tively, where at each iteration the training examples for which the classifier works
less well are “boosted” by increasing their associated training weight. Cascaded
boosting was used in [389] for efficient face detection and localization in images, a
task nowadays handled even by entry-level digital cameras and webcams.

Despite the success of SVMs and boosting, these techniques do not extend nat-
urally to multiple class problems [74, 371]. In principle, classification trees and
forests work unmodified, with any number of classes. For instance, they have been
tested on ∼20 classes in [341] and ∼30 classes in [343].

Abundant literature has shown the advantage of fusing together multiple simple
learners of different types [230, 352, 374, 413, 427]. Classification forests repre-
sent a simple, yet effective way of combining randomly trained classification trees.
A thorough comparison of forests with respect to other binary classification algo-
rithms has been presented in [56]. That work suggests that classification forests yield
good generalization, even in problems with high dimensionality.

Classification forests have also been employed successfully in a number of prac-
tical vision and medical applications such as: tracking of keypoints in videos [213],
human pose estimation [62, 311, 344], gaze estimation [25], anatomy detection in
CT scans [77], semantic segmentation of photos and videos [341], and 3D delin-
eation of brain lesions [126, 428]. Many such applications are described in detail in
Part II of this book. Finally, recent new techniques are emerging which demonstrate
the power of performing joint classification and regression within the same forest
framework [131, 134].

4.2 Specializing the Decision Forest Model for Classification

This section specializes the abstract forest model introduced in Chap. 3 for use in
classification.

Problem Statement The classification task may be summarized as follows:

Given a labeled set of training data learn a general mapping which asso-
ciates previously unseen test data with their corresponding classes.

The need for a general rule that can be applied to “not-yet-available” test data is
typical of inductive tasks.1 In classification the desired output is of discrete, cate-
gorical, unordered type. Consequently, so is the nature of the training labels. Each

1As opposed to transductive tasks. The distinction will become clearer later.
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Fig. 4.1 Classification: training data and tree training. (a) Input data points are denoted with cir-
cles in their 2D feature space. Different colors denote different ground truth class labels. There
are four classes here. Gray circles indicate unlabeled, previously unseen test data. (b) A binary
classification tree. The edge thickness is proportional to the amount of training data going through
it. Edge colors are a mix of the colors of the four classes, weighted in proportion to the associated
class probabilities. During training a set of labeled training points S0 is used to optimize the pa-
rameters of the tree. In a classification tree the entropy of the class distributions associated with
different nodes decreases (the confidence increases) when going from the root towards the leaves.
Note the gray-ish color of the root node and the more distinct colors of the leaves

training point is denoted as a pair (v, c). In Fig. 4.1a data points are denoted with
circles, with different colors indicating different training labels. Testing points (not
available during training) are indicated in gray (their class label is not known in
advance).

More formally, during testing we are given an input test data v and we wish to
infer a class label c such that c ∈ C, with C = {ck}|C|

k=1. More generally we wish to
compute the whole distribution p(c|v). As usual the input is represented as a multi-
dimensional vector of feature responses v = (x1, . . . , xd) ∈ R

d . Training happens
by optimizing an energy over a training set S0 of data and associated ground truth
labels. Next we specify the precise nature of this energy.

4.2.1 The Training Objective Function

Forest training happens by optimizing the parameters of the weak learner at each
split node j via:

θ j = arg max
θ∈Tj

I (Sj , θ). (4.1)

For classification the objective function I takes the form of a classical information
gain defined for discrete distributions:

I (Sj , θ) = H(Sj ) −
∑

i∈{L,R}

|S i
j |

|Sj |H
(
S i

j

)
(4.2)
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with i indexing the two child nodes. The two child sets are a function of the parent
set and split parameters θ , but this dependency is left implicit in (4.2) to avoid
cluttering the notation. The entropy for a generic set S of training points is defined
as

H(S) = −
∑

c∈C
p(c) logp(c) (4.3)

where p(c) is calculated as the normalized empirical histogram of labels corre-
sponding to the training points in S . As illustrated in Fig. 4.1b training a classifi-
cation tree by maximizing the information gain has the tendency to produce trees
where the entropy of the class distributions associated with the nodes decreases (the
prediction confidence increases) when going from the root towards the leaves. In
turn, this yields increasing certainty of prediction.

Although the above definitions of information gain and entropy are very popular,
viable alternative instantiations exist. For example in [268] the author presents both
an information gain measure which is built upon more robust, unbiased estimates
of entropy, and also non-parametric entropy estimators for both classification and
regression tasks. In this book we also stick with using an information gain-like ob-
jective function. As will be clearer later, this choice aids unification of diverse tasks
under the same forest framework.

4.2.2 Class Re-balancing

Note that in some applications one has an unbalanced distribution of classes in the
training set S0. For instance, when performing semantic image segmentation the
number of “background” pixels may dominate other “object” pixels. This may have
a detrimental effect on forest training. This problem may be mitigated by resampling
the training data so as to have roughly uniform training distributions. An alternative
is to use the known prior class distribution to weight the contribution of each class
by its inverse frequency when computing the information gain at each split node.

4.2.3 Randomness

In (4.1) randomness is injected via randomized node optimization, with as before
ρ = |Tj | controlling the amount of randomness. For instance, before starting to train
node j we can randomly sample ρ = 1000 parameter values (e.g. randomly select-
ing 1000 features) out of possibly billions or even infinite possibilities. Information
gain maximization is then carried out by exhaustive search on this reduced set of
possibilities. It is important to point out that it is not necessary to have the entire
set T computed in advance and stored. We can generate each random subset Tj as
needed before starting training the corresponding node.
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Fig. 4.2 Classification forest testing. During testing the same unlabeled test input data v is pushed
through each component tree. At each internal node a test is applied and the data point sent to the
appropriate child. The process is repeated until a leaf is reached. At the leaf the stored posterior
pt (c|v) is read off. The forest class posterior p(c|v) may be obtained as the average of all tree
posteriors (4.4)

4.2.4 The Leaf and Ensemble Prediction Models

Classification forests produce probabilistic output as they return not just a single
class point prediction but an entire class distribution. In fact, during testing, each
tree leaf yields the posterior pt(c|v). Then, the forest output is defined as

p(c|v) = 1

T

T∑

t=1

pt(c|v) (4.4)

(this is the same as (3.14) from the previous chapter). This is illustrated with a small,
three-tree forest in Fig. 4.2. Averaging tree posteriors is only one possible choice of
ensemble model, one which will be used in the examples in this book. However,
alternatives are possible.

4.3 Effect of Model Parameters

The choices made in terms of the form of the objective function and that of the
prediction model directly affect a classification forest accuracy and generalization.
This section studies the effect of further parameters such as the forest size, its depth,
the amount of randomness and the weak learner type. We use many illustrative, syn-
thetic examples designed to bring to life various properties of classification forests.
Chapter 13 demonstrates such properties further with a real-world, commercial ap-
plication.
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Fig. 4.3 A toy example illustrating the effect of forest size T . (a) Training points belonging to
two classes (identified by the red and yellow colors). (b) Different training trees produce differ-
ent partitions and thus different leaf predictors. The color of tree nodes and edges indicates the
class probability of training points going through them. (c) In testing, increasing the forest size T

produces smoother class posteriors. All experiments were run with D = 2 and axis-aligned weak
learners

4.3.1 The Effect of the Forest Size on Generalization

Figure 4.3 shows a first synthetic example. Training points belonging to two differ-
ent classes (shown in yellow and red) are randomly drawn from two well separated
Gaussian distributions (Fig. 4.3a). The points are represented as 2-vectors, where
each dimension represents a different feature.

A forest of shallow trees (D = 2) and varying size T is trained on those points. In
this example simple axis-aligned weak learners are used. In such degenerate trees
(stumps) there is only one split node, the root itself (Fig. 4.3b). The trees are all
randomly different from one another and each defines a slightly different partition
of the data. In this simple (linearly separable) example, each tree defines a “per-
fect” partition since the training data is separated perfectly. However, the partitions
themselves are still randomly different from one another.

Figure 4.3c shows the classification posteriors resulting from testing the forest for
all non-training points across a square portion of the feature space (the white testing
pixels in Fig. 4.3a). In this visualization the color associated with each test point is a
linear combination of the colors corresponding to the two classes, where the mixing
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weights are proportional to the class posteriors. Thus, intermediate, mixed colors
(orange in this case) correspond to regions of high uncertainty and low predictive
confidence.

We observe that each individual tree produces overconfident predictions (sharp
probabilities in Fig. 4.3c1). This is undesirable. In fact, intuitively one would expect
the confidence of classification to be reduced for test data which is “different” than
the training data. The larger the difference, the larger the uncertainty. Thanks to
all trees being different from one another, increasing the forest size from T = 1 to
T = 200 produces much smoother posteriors (Fig. 4.3c3). Now we observe higher
confidence near the training points and lower confidence away from training regions
of space; a more intuitive generalization behavior.

For few trees (e.g. T = 8) the forest posterior shows strong box-like artifacts.
This is due to the use of an axis-aligned weak learner model. Such artifacts yield
low quality confidence estimates (especially when extrapolating away from training
regions) and ultimately imperfect generalization. In the remainder of this paper we
will always keep an eye on the quality of the uncertainty as this is key for inductive
generalization away from (possibly little) training data.

4.3.2 Multiple Classes and Training Noise

One major advantage of decision forests over e.g. support vector machines and
boosting is that the same classification model can handle both binary and multi-class
problems. This is illustrated in Fig. 4.4 with both two- and four-class examples, and
different levels of noise in the training data.

The top row of the figure shows the input training points (two classes in Fig. 4.4a
and four classes in Fig. 4.4b, c). The middle row shows corresponding testing class
posteriors. The bottom row also shows the entropy associated with each pixel. Note
how points in between spiral arms or further away from training points are as-
sociated with larger uncertainty (orange pixels in Fig. 4.4a′ and gray-ish ones in
Fig. 4.4b′, c′). This behavior is very much in agreement with our intuition of uncer-
tainty.

In this case we have employed a richer conic section weak learner model (see
Sect. 3.3.3) which reduces the artifacts observed in the previous example and yields
smoother posteriors. Notice for instance in Fig. 4.4b′ how the curve separating the
red and the green spiral arms is nicely continued away from training points (with
increasing uncertainty).

If the noise in the position of training points increases (cf. Fig. 4.4b and Fig. 4.4c)
then training points for different classes are more intermingled with one another. As
expected, this increase in training noise yields a larger overall uncertainty in the
testing posterior (represented by less saturated colors in Fig. 4.4c′). Next we delve
further into the issue of training noise and mixed training data.



32 A. Criminisi and J. Shotton

Fig. 4.4 Handling multiple classes and the effect of training noise. (a, b, c) Training points for
three different experiments: 2-class spiral, 4-class spiral and another 4-class spiral with noisier
point positions, respectively. (a′, b′, c′) Corresponding testing posteriors. (a′′, b′′, c′′) Corre-
sponding entropy images (brighter for larger entropy). The classification forest can handle both
binary and multi-class problems. With larger training noise the classification uncertainty increases
(less saturated colors in c′ and less sharp entropy map in c′′). All experiments in this figure were
run with T = 200, D = 6, and a conic section weak learner model

4.3.3 The Effect of the Tree Depth

The experiment in Fig. 4.5 illustrates the behavior of classification forests on a four-
class training set where there is both mixing of labels (in feature space) and large
gaps. Here three different forests have been trained with the same number of trees
T = 200 and varying maximum depth D. We observe that as the tree depth increases
the overall prediction confidence also increases. Furthermore, in large gaps (e.g.
between red and blue regions), the optimal separating surface tends to be placed
roughly in the middle of the gap.2

2This effect will be analyzed further in the next section.
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Fig. 4.5 The effect of tree depth. A four-class problem with both mixing of training labels and
large gaps. (a) Training points. Notice the mixing of e.g. yellow and red points due to noisy training
data. (b, c, d) Testing posteriors for different tree depths. All experiments were run with T = 200
and a conic weak learner model. The tree depth is a crucial parameter in avoiding under- or over-
fitting

Finally, we notice that a large value of D (in the example D = 15) tends to pro-
duce overfitting, i.e. the posterior tends to split off isolated clusters of noisy training
data (denoted with white circles in the figure). In fact, changing the maximum tree
depth parameter D is one way to control the amount of overfitting. By the same to-
ken, too shallow trees produce washed-out, low-confidence posteriors. Thus, while
using multiple trees alleviates the overfitting problem of individual trees, it does not
cure it completely. In practice one has to be very careful to select the most appro-
priate value of D as its optimal value is a function of the problem complexity.

4.3.4 The Effect of the Weak Learner

Another important issue that has perhaps been overlooked in the literature is the
effect of a particular choice of weak learner model on the forest behavior.

The experiment in Fig. 4.6 illustrates this point. We are given four sets of well
separated point clusters, one cluster per class. We train three forests on those points
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Fig. 4.6 The effect of the weak learner model. (a) A four-class training set. (b) The testing poste-
rior for a forest with axis-aligned weak learners. In regions far from the training points the posterior
is overconfident (illustrated by saturated, rich colors). (c) The testing posterior for a forest with ori-
ented line weak learners. (d) The testing posterior for a forest with conic section weak learners.
The uncertainty of class prediction increases with distance from the training data points. Here we
use D = 3 and T = 200 for all examples

with different choices of weak learner. The goal is to study the effect of the weak
learner on the confidence in regions far from the training data. By comparing
Fig. 4.6b, Fig. 4.6c and Fig. 4.6d we observe that an axis-aligned weak learner
produces overconfident predictions in the corners of the space. In this case the con-
fidence value is independent of the distance from training points. In contrast, the
curved nature of the conic sections yield a possibly more intuitive decrease of confi-
dence with distance from training data. However, it is difficult to say which behavior
is best in general, as this is really application dependent. Here we just wish to high-
light the fact that decision forests are flexible enough to produce different confidence
behaviors and show how to control them.

Another experiment is shown in Fig. 4.7 where we are given a set of training
points arranged in four spirals, one for each of the four classes. Six different forests
have been trained on the same training data, for two different values of tree depth
and three different weak learners. The 2×3 arrangement of images shows the output
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Fig. 4.7 The effect of the weak learner model. The same set of 4-class training data is used to train
six different forests, for two different values of D three different weak learner types. For fixed
weak learner deeper trees produce higher confidence. For constant D non-linear weak learners
produce the most visually pleasing results (though not necessarily the best for all applications).
The axis-aligned weak learner model produces blocky artifacts while the curvilinear model tends
to extrapolate the shape of the spiral arms in a more “natural” way. Training has been achieved
with ρ = 500 (i.e. randomly sampling 500 lines/curves) at all split nodes. The forest size is kept
fixed at T = 400

test posterior for varying D (in different rows) and varying weak learner model
(in different columns). All experiments are conducted with a very large number of
trees (T = 400) to remove the effect of forest size and reach close to the maximum
possible smoothness under the chosen model.

This experiment confirms again that increasing D increases the confidence of the
output (for a fixed choice of weak learner). This is illustrated by the more intense
colors going from the top row to the bottom row. Furthermore, we observe that
the axis-aligned model may still separate the training data well, but produces large
blocky artifacts in the test regions. This tends to indicate bad generalization. The
oriented line model [158, 246] is a clear visual improvement, and better still is the
non-linear model as it extrapolates the shape of the spiral arms in a more naturally
curved manner.

On the flip side, of course, we should also consider the fact that axis-aligned
tests are extremely efficient to compute. So the choice of the specific weak learner
has to be based on considerations of both accuracy and efficiency and depends on
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Fig. 4.8 The effect of randomness. The same set of 4-class training data is used to train six dif-
ferent forests, two different values of D three different weak learners. This experiment is identical
to that in Fig. 4.7 except that we have used much more training randomness. In fact ρ = 5 for all
split nodes. The forest size is kept fixed at T = 400. More randomness reduces the artifacts of the
axis-aligned weak learner a little, as well as reducing overall prediction confidence too

the specific application at hand. Next we study the effect of randomness by running
exactly the same experiment but with a much larger amount of training randomness.

4.3.5 The Effect of Randomness

Figure 4.8 shows the same experiment as in Fig. 4.7 with the only difference that
now we set ρ = 5 as opposed to ρ = 500. Thus, much fewer separating lines/curves
were made available to each node during training. This increases the randomness of
each tree and reduces their correlation.

Larger randomness reduces the blocky artifacts of the axis-aligned weak learner
and produces more rounded decision boundaries (first column in Fig. 4.8). Further-
more, larger randomness yields a much lower overall confidence. This is noticeable
especially in shallower trees (the washed-out colors in the top row).

A disadvantage of the more complex weak learners is that they are sampled from
a larger parameters space. Thus finding discriminative sets of parameter values may
be time consuming. However, in this toy example the more complex conic section
learner model works well for deeper trees (D = 13) even for small values of ρ (large
randomness). The results reported here are only indicative. In fact, which specific
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weak learner to use depends on considerations of efficiency as well as accuracy, and
these considerations are application dependent.

4.4 Maximum Margin Classification with Forests

The hallmark of support vector machines is their ability to separate data belonging
to different classes via a margin-maximizing surface. This, in turn, yields good gen-
eralization even with relatively little training data. This section shows how this im-
portant property is replicated in random classification forests and under which con-
ditions. Margin-maximizing properties of random forests were discussed in [211].
Here we show a different, simpler formulation, analyze the conditions that lead to
margin maximization, and discuss how this property is affected by different choices
of model parameters.

Imagine we are given a linearly separable 2-class training data set such as that
shown in Fig. 4.9a. For simplicity here we assume d = 2 (only two features describe
each data point), an axis-aligned weak learner model and D = 2 (trees are simple
binary stumps). As usual randomness is injected via randomized node optimization.

When training the root node of the first tree, if we use enough candidate fea-
tures/parameters (i.e. |T0| is large) the selected separating line tends to be placed
somewhere within the gap (see Fig. 4.9a) so as to separate the training data perfectly
(achieving maximum information gain). Any position within the gap is associated
with exactly the same, maximum information gain. Thus, a collection of randomly
trained trees produces a set of separating lines randomly placed within the gap.

If the candidate separating lines are sampled from a uniform distribution (as is
usually the case) then this would yield forest class posteriors that vary within the gap
as a linear ramp, as shown in Fig. 4.9b, c. If we are interested in a hard separation
then the optimal separating surface (assuming equal loss) is such that the posteriors
for the two classes are identical. This corresponds to a line placed right in the middle
of the gap, i.e. the maximum margin solution. Next, we describe the same concepts
more formally.

We are given the two-class training points in Fig. 4.9a. In this simple example the
training data is not only linearly separable, but it is perfectly separable via vertical
stumps on x1. So we constrain our weak learners to be vertical lines only, i.e.

h(v, θ j ) = [
φ(v) > τ

]
with φ(v) = x1. (4.5)

Under these conditions we can define the gap Δ as Δ = x′′
1 − x′

1, with x′
1 and x′′

1
corresponding to the first feature of the two “support vectors”,3 i.e. the yellow point
with largest x1 and the red point with smallest x1. For a fixed value of x2 the clas-
sification forest produces the posterior p(c|x1) for the two classes c1 and c2. The

3Analogous to support vectors in SVM.
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Fig. 4.9 Forest’s maximum margin properties. (a) Input 2-class training points. They are separated
by a gap of dimension Δ. (b) Forest posterior. Note that all of the uncertainty band resides within
the gap. (c) Cross-sections of class posteriors along the horizontal, white dashed line in (b). Within
the gap the class posteriors are linear functions of x1. Since they have to sum to 1 they meet right
in the middle of the gap. In these experiments we use ρ = 500, D = 2, T = 500 and axis aligned
weak learners

optimal separating line (vertical) is at position τ ∗ such that

τ ∗ = arg min
τ

∣∣p(c = c1|x1 = τ) − p(c = c2|x1 = τ)
∣∣. (4.6)

We make the additional assumption that when training a node its available test
parameters (in this case just τ ) are sampled from a uniform distribution, then the
forest posteriors behave linearly within the gap region, i.e.

lim
ρ→|T |,T →∞

p(c = c1|x1) = x1 − x′
1

Δ
, ∀x1 ∈ [

x′
1, x

′′
1

]
(4.7)

(see Fig. 4.9b, c). Consequently, since
∑

c∈{c1,c2} p(c|x1) = 1 we have

lim
ρ→|T |,T →∞

τ ∗ = x′
1 + Δ/2 (4.8)

which shows that the optimal separation is placed right in the middle of the gap. This
demonstrates the forest’s margin-maximization properties for this simple example.
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Note that each individual tree is not guaranteed to produce maximum margin
separation; it is instead the combination of multiple trees that at the limit T → ∞
produces the desired max-margin behavior. In practice it suffices to have T and ρ

“large enough”. Furthermore, as observed earlier, for perfectly separable data each
tree produces overconfident posteriors. Once again, their combination in a forest
yields fully probabilistic and smooth posteriors (in contrast to SVM).

The simple mathematical derivation above provides us with some intuition on
how model choices such as the amount of randomness or the type of weak learner
affect the placement of the forest’s separating surface. The next sections should
clarify these concepts further.

4.4.1 The Effect of Randomness on Optimal Separation

The experiment in Fig. 4.9 has used a large value of ρ (ρ → |T |, little randomness,
large tree correlation) to make sure that each tree decision boundary fell within
the gap. When using more randomness (smaller ρ) then the individual trees are
not guaranteed to split the data perfectly and thus they may yield a sub-optimal
information gain. In turn, this yields a lower confidence in the posterior. Now, the
locus of points where p(c = c1|x1) = p(c = c2|x1) is no longer placed right in
the middle of the gap. This is shown in the experiment in Fig. 4.10 where we can
observe that by increasing the randomness (decreasing ρ) we obtain smoother and
more spread-out posteriors. The optimal separating surface is less sharply defined.
The effect of individual training points is weaker as compared to the entire mass
of training data; and in fact, it is no longer possible to identify individual support
vectors. This may be advantageous in the presence of “sloppy” or inaccurate training
data.

The role of the parameter ρ is very similar to that of “slack” variables in
SVM [380]. In SVM the slack variables control the influence of individual sup-
port vectors versus the rest of training data. Appropriate values of slack variables
yield higher robustness with respect to training noise.

4.4.2 Influence of the Weak Learner Model

Figure 4.11 shows how more complex weak learners affect the shape and orientation
of the optimal, hard classification surface (as well as the uncertain region, in orange).
Once again, the position and orientation of the separation boundary is more or less
sensitive to individual training points depending on the value of ρ. Little randomness
produces a behavior closer to that of support vector machines.

In classification forests, using linear weak learners still produces (in general)
globally non-linear classification (see the black curves in Fig. 4.10c and Fig. 4.11b).
This is due to the fact that multiple simple linear split nodes are organized in a
hierarchical fashion.
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Fig. 4.10 The effect of randomness on the forest margin. (a) Forest posterior for ρ = 50 (small
randomness). (b) Forest posterior for ρ = 5. (c) Forest posterior for ρ = 2 (highest randomness).
These experiments have used D = 2, T = 400 and axis-aligned weak learners. The bottom row
shows 1D posteriors computed along the white dashed line. Increasing randomness produces less
well defined separating surfaces. The optimal separating surface, i.e. the loci of points where the
class posteriors are equal (shown in black) moves towards the left of the margin-maximizing line
(shown in green in all three experiments). As randomness increases individual training points have
less influence on the separating surface

4.4.3 Maximum Margin with Multiple Classes

Since classification forests can naturally apply to more than 2 classes how does this
affect their maximum margin properties? We illustrate this point with a multi-class
synthetic example. In Fig. 4.12a we have a linearly separable four-class training set.
On it we have trained two forests with |Tj | = 50, D = 3, T = 400. The only differ-
ence between the two forests is the fact that the first one uses an oriented line weak
learner and the second a conic weak learner. Figure 4.12b, c show the corresponding
testing posteriors. As usual gray pixels indicate regions of higher posterior entropy
and lower confidence. They roughly delineate the four optimal hard classification re-
gions. Note that in both cases their boundaries are roughly placed half-way between
neighboring classes. As in the 2-class case the influence of individual training points
is dictated by the randomness parameter ρ.

Finally, when comparing Fig. 4.12c and Fig. 4.12b we notice that for conic learn-
ers the shape of the uncertainty region evolves in a curved fashion when moving
away from training data.
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Fig. 4.11 The effect of the weak learner on forest margin. (a) Forest posterior for axis aligned
weak learners. (b) Forest posterior for oriented line weak learners. (c) Forest posterior for conic–
section weak learners. In these experiments we have used ρ = 50, D = 2, T = 500. The choice
of weak learner affects the optimal, hard separating surface (in black). Individual training points
influence the surface differently depending on the amount of randomness in the forest

Fig. 4.12 Forest’s max-margin properties for multiple classes. (a) Input four-class training points.
(b) Forest posterior for oriented line weak learners. (c) Forest posterior for conic section weak
learners. Regions of high entropy are shown as gray bands and correspond to loci of optimal
separation. In these experiments we have used the following parameter settings: ρ = 50, D = 3,
T = 400

4.4.4 The Effect of the Randomness Model

This section shows a direct comparison between the randomized node optimization
and the bagging model.

In bagging, randomness is injected by randomly sampling different subsets of
training data. So, each tree sees a different training subset. Its node parameters are
then fully optimized on this set. This means that specific “support vectors” may
not be available in some of the trees. The posterior associated with those trees will
then tend to move the optimal separating surface away from the maximum margin
one.

This is illustrated in Fig. 4.13 where we have trained two forests with ρ =
500, D = 2, T = 400 and two different randomness models. The forest tested in
Fig. 4.13a uses randomized node optimization (RNO). The one in Fig. 4.13b uses
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Fig. 4.13 Max-margin: bagging v randomized node optimization. (a) Posterior for forest trained
with randomized node optimization. (b) Posterior for forest trained with bagging. In bagging,
for each tree we use 50 % random selection of training data with replacement. Loci of optimal
separation are shown as black lines. In these experiments we use ρ = 500, D = 2, T = 400 and
axis-aligned weak learners. Areas of high entropy are shown in gray to highlight the separating
surfaces

bagging (randomly selecting 50 % training data with replacement) on exactly the
same training data. In bagging, when training a node, there may be a whole range of
values of a certain parameter which yield maximum information gain (e.g. the range
[τ ′

1, τ
′′
1 ] for the threshold τ1). In such a case we could decide to always select one

value out of the range (e.g. τ ′
1). But this would probably be an unfair comparison.

Thus we chose to randomly select a parameter value uniformly within that range.
In effect here we are combining bagging and random node optimization together.
The effect is shown in Fig. 4.13b. In both cases we have used a large value of ρ

to make sure that each tree achieves decent optimality in parameter selection. We
observe that the introduction of training set randomization leads to smoother pos-
teriors whose optimal boundary (shown as a vertical black line) does not coincide
with the maximum margin (green, solid line). Of course this behavior is controlled
by how much (training set) randomness we inject in the system. If we were to take
all training data then we would reproduce a max-margin behavior (but it would not
be bagging). One advantage of bagging is increased training speed (due to reduced
training set size). More experiments and comparisons are available in [79]. In the
rest of the paper we use the RNO randomness model because it allows us to use
all available training data and enables us to control the maximum margin behavior
simply, by means of changing ρ.
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4.5 Summary

This chapter has taken the abstract decision forest model introduced in Chap. 3
and specialized it for multi-class classification. Toy experiments have illustrated the
effects of various parameters on the accuracy and confidence of the predicted output,
as well as the forest maximum margin classification properties. The experiments
are only on synthetic data to convey the main principles of classification forests
at an intuitive level. Chapters in Part II will demonstrate the use of classification
forests in various practical applications. Furthermore, additional details regarding
classification forests in comparison with alternative techniques such as boosting and
support vector machines may be found in [80]. The reader is also invited to browse
the many more examples, animations and demo videos available at [79].

4.6 Exercises and Experiments

In this section and at the end of other chapters in Part I we present a number of
exercises. To complete them you need to download, compile and run the ‘Sher-
wood’ software library accompanying the book. This library can be downloaded
for free from: http://research.microsoft.com/projects/decisionforests. Please refer to
Chap. 22 for instructions on how to build and use the library.

Exercise 4.1

To begin, type sw clas in a command window to get a list of instructions.
The results of Fig. 4.3c (for T = 8) can be reproduced by running the following command:
sw clas exp1_n2.txt /d 2 /t 8

Note that parameter values D = 2 and T = 8 are supplied via the command line switches
/d and /t. By default, ρ = 10 and axis-aligned split functions are used.

• Try varying the number of trees T :
sw clas exp1_n2.txt /d 2 /t 1
sw clas exp1_n2.txt /d 2 /t 200

What happens? Why?
• Try running these commands several times.

Are the results consistent across multiple runs? Why?
• Try using linear instead of axis-aligned weak learners:

sw clas exp1_n2.txt /d 2 /t 1 /split linear
sw clas exp1_n2.txt /d 2 /t 8 /split linear
sw clas exp1_n2.txt /d 2 /t 200 /split linear

What is the impact on the uncertainty region?
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Exercise 4.2

Reproduce the zoomed out 4-class experiment of Fig. 4.6 by running the following com-
mand:
sw clas exp1_n4.txt /d 3 /t 10 /padx 2.0 /pady 2.0

Note that the /padx and /pady switches are used to increase the range of the plot beyond
the range of the training data. The arguments are interpreted as a proportion of the training
data range along the x and y axes. The plot extent is computed so as to completely contain
the (padded) data.

• Try using different value for D, the maximum tree depth:
sw clas exp1_n4.txt /d 1 /t 1 /padx 2.0 /pady 2.0
sw clas exp1_n4.txt /d 2 /t 1 /padx 2.0 /pady 2.0
sw clas exp1_n4.txt /d 10 /t 1 /padx 2.0 /pady 2.0

How many tree levels are necessary? Why?
• Try running these commands several times.

What is the impact of varying T ?
• Try using linear instead of axis aligned features:

sw clas exp1_n4.txt /d 3 /t 200 /padx 2.0 /pady 2.0
/split linear
What is the effect of the weak learner on the confidence region?

Exercise 4.3

Reproduce the results of Fig. 4.4a′ by running the command:
sw clas exp5_n2.txt /d 6 /t 200

• How does the confidence change when using linear split functions? What is the effect
away from training points?
sw clas exp5_n2.txt /d 6 /t 200 /split linear

• What is the impact of reducing D?
sw clas exp5_n2.txt /d 3 /t 200 /split linear

• Try other values for D, both large and small.
What do you notice about the impact of D on underfitting? Do you notice overfitting?

Exercise 4.4

Let us run the classification forest on a 4-arm spiral data:
sw clas exp5_n4.txt /d 8 /t 200 /split linear

• What is the impact of reducing D?
sw clas exp5_n4.txt /d 6 /t 200 /split linear
sw clas exp5_n4.txt /d 4 /t 200 /split linear

• Try other values for D, both large and small.
What do you notice about the impact of D on underfitting and overfitting?
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Exercise 4.5

Figures 4.7 and 4.8 illustrate the effect of varying the amount of training randomness via
the parameter ρ (in Sherwood, ρ corresponds to the switch /f). Compare the results of the
following two experiments:
sw clas exp5_n4.txt /d 8 /t 400 /f 500 /split linear
sw clas exp5_n4.txt /d 8 /t 400 /f 3 /split linear

What is the likely impact on generalization of increased randomness (i.e. small ρ)?

• Now run the experiments again using axis-aligned split functions
sw clas exp5_n4.txt /d 8 /t 400 /f 500
sw clas exp5_n4.txt /d 8 /t 400 /f 3

How does the choice of weak learner interact with randomness?
• Try different values of other parameters such as T and D.



Chapter 5
Regression Forests

A. Criminisi and J. Shotton

This chapter discusses the use of decision forests for the probabilistic estimation of
continuous variables. Regression forests are used for the non-linear regression of
dependent variables given independent input, where both input and output may be
multi-dimensional.

Regression forests are related to but less popular than their classification counter-
part. Regression forests share many of the advantages of classification forests such
as efficiency and flexibility. The main difference between regression and classifica-
tion is that the output label to be associated with an input data point is continuous
in the regression task. Therefore, the training labels also need to be continuous.
Consequently, the objective function has to be adapted appropriately.

As with the other chapters we start with a brief literature survey of linear and
non-linear regression techniques. We then describe the regression forest model, and
finally we demonstrate its properties with a number of illustrative examples. Exer-
cises are presented in the final section.

5.1 Non-linear Regression in the Literature

Given a set of noisy input data and associated continuous measurements, least
squares techniques [30] can be used to fit a regressor, perhaps of a specified func-
tional form (e.g. polynomial), which minimizes an error computed over all training
points. Under this model, given a new test input the corresponding output can be
estimated efficiently. The simplest incarnation of this technique is linear regression
which, however, is not appropriate when trying to model most natural phenomena
which are often non-linear [326]. Another well known issue with linear regression
techniques is their sensitivity to input noise.

A. Criminisi (B) · J. Shotton
Microsoft Research Ltd., 7 J.J. Thomson Avenue, Cambridge CB3 0FB, UK
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In geometric computer vision, a popular technique for achieving robust regres-
sion via randomization is RANSAC [109, 153]. For instance the estimation of multi-
view epipolar geometry and image registration transformations can be achieved in
this way [153]. One disadvantage of conventional RANSAC is that its output is non-
probabilistic. As will become clearer later, regression forests may be thought of as
an extension of RANSAC, with little RANSAC regressors associated with each leaf
node.

In machine learning, the success of support vector classification has encour-
aged the development of support vector regression (SVR [199, 351]). Similar to
RANSAC, SVR can deal successfully with large amounts of noise. In [398] re-
gression of clinically useful variables is achieved via ensembles of relevance vector
machines (RVMs). In [420] boosted ridge regression was employed for the seg-
mentation of the left ventricle in ultrasound images. In Bayesian machine learning,
Gaussian processes [28, 305] have enjoyed much success due to their simplicity,
elegance and their rigorous uncertainty modeling.

Although (non-probabilistic) regression forests were described in [44] they have
only recently started to be used in computer vision and medical image analy-
sis [70, 78, 82, 102, 133, 180, 224, 251, 309]. Recently, new techniques are emerg-
ing which demonstrate the power of performing joint classification and regression
within the same forest framework [131, 134]. Other recent papers [84, 360] have
simultaneously and independently extended regression forests by conditioning the
output prediction on global variables. This gives rise to powerful conditional regres-
sion forests.

Next, we discuss how to specialize the generic forest model described in Chap. 3
to efficiently achieve probabilistic, non-linear regression.

5.2 Specializing the Decision Forest Model for Regression

We start with a definition of the goal of supervised regression.

Problem Statement The regression task can be summarized as follows:

Given a labeled set of training data, learn a general mapping which asso-
ciates previously unseen, independent test data points with their dependent,
continuous output prediction.

Like classification, the regression task is inductive, with the main difference be-
ing the continuous nature of the output. In general, a training point is denoted as a
pair (v,y). Figure 5.1a provides an illustrative example of training data and asso-
ciated continuous ground truth labels. A previously unseen test input (unavailable
during training) is shown as a light gray circle on the x axis.

Formally, given a multivariate input v we wish to associate a continuous mul-
tivariate label y ∈ R

n. More generally, we wish to estimate the probability density
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Fig. 5.1 Regression: training data and tree training. (a) Training data points are shown as dark
circles. The input feature space is one-dimensional in this example, v = (x). The associated con-
tinuous ground truth label is denoted by their position along the direction of the y axis. The variable
x is the independent input and y is the dependent output variable. A previously unseen test input
(for which y is unknown) is indicated with a light gray circle and the dashed gray line. (b) A binary
regression tree. The edge thickness is proportional to the amount of training data going through
it. Red indicates high entropy, green denotes low entropy. During training a set of labeled training
points S0 is used to optimize the parameters of the tree. In a regression tree the entropy of the
continuous densities associated with different nodes decreases (their confidence increases) when
going from the root towards the leaves

function p(y|v). As usual the input is represented as a multi-dimensional feature
response vector v = (x1, . . . , xd) ∈ R

d .

What Are Regression Forests? A regression forest is a collection of randomly
trained regression trees (Fig. 5.2). As with classification, it can be shown that in
general a random regression forest generalizes better than a single fully optimized
regression tree.

A regression tree (Fig. 5.1b) splits a complex non-linear regression problem into
a set of smaller problems which can be more easily handled by simpler models (e.g.
linear ones; see also Fig. 5.3). Next, we specify the precise nature of each model
component.

5.2.1 The Prediction Model

The first job of a decision tree is to decide to which branch to direct the incom-
ing data. But when the data reach a terminal node then that leaf needs to make a
prediction.

The actual form of the prediction depends on the leaf prediction model. In clas-
sification we have used the pre-stored empirical class posterior as the model. In
regression forests we have a few alternatives, as illustrated in Fig. 5.3. For instance
we could use a polynomial function of the input v. In the low-dimensional example
shown in the figure, a generic polynomial model corresponds to y(x) = ∑n

i=0 wix
i .

This simple model also captures the linear and constant models (see Fig. 5.3a, b).
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Fig. 5.2 Regression forest: the ensemble model. The regression forest posterior is simply the
average of all individual tree posteriors: p(y|v) = 1

T

∑T
t=1 pt (y|v)

In this book we are interested in output confidence as well as its actual value.
Thus for prediction we can use a probability density function over the continuous
variable y. Given the t th tree in a forest and an input point v, the associated leaf out-
put takes the form pt (y|v). In the low-dimensional example in Fig. 5.3c we assume
an underlying linear model of type y = w0 + w1x and each leaf yields the condi-
tional p(y|x) (see below). Note that in general the leaf probability pt(y|v) can be
multi-modal. For example it might be obtained by fitting a Gaussian Mixture Model
(GMM) to the training data arriving at that leaf.

5.2.2 The Ensemble Model

Just like in classification, the forest output is the average of all tree outputs (Fig. 5.2):

p(y|v) = 1

T

T∑

t

pt (y|v). (5.1)

A practical justification for this averaging model was presented in Sect. 3.4, and
viable alternatives exist.

5.2.3 Randomness Model

As for classification, here we also use a randomized node optimization model.
Therefore, the amount of randomness is controlled during training by the parameter
ρ = |Tj |. The random subsets of split parameters Tj can be generated on the fly
when training the j th node.
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Fig. 5.3 Example predictor models. (a) Constant function. (b) Polynomial and linear functions.
(c) Probabilistic linear model, which returns the conditional distribution p(y|x). The confidence
of the prediction is denoted with the shaded area

5.2.4 The Training Objective Function

Forest training is achieved by optimizing an energy function defined over a training
set S0 of data and associated continuous labels. Therefore, restating (3.13), a split
node j is optimized as

θ j = arg max
θ∈Tj

I (Sj , θ). (5.2)

The main difference between classification and regression forests is in the form of
the objective function I .

In [45] regression trees are trained by minimizing a least-squares or least-
absolute error function. Here, for consistency with our general forest model we
employ a continuous formulation of information gain which makes use of the func-
tional form of the differential entropy of a Gaussian density.

In a generic decision forest the information gain associated with the j th split
node is

I (Sj , θ) = H(Sj ) −
∑

i∈{L,R}

|S i
j |

|Sj |H
(
S i

j

)
. (5.3)

As usual, Sj indicates the set of training data arriving at node j , and SLj , SRj the left
and right split sets.

Next, we derive the specific form of regression information gain for the case of
1D input x and 1D output y. We use uni-variate variables for simplicity of exposition
(see also Fig. 5.4). Given a training set S0, the average entropy for a generic training
subset S is defined as

H(S) = − 1

|S|
∑

x∈S

∫

y

p(y|x) logp(y|x)dy. (5.4)

We model the conditional probability p(y|x) as the following Gaussian distribution:

p(y|x) = N
(
y;y(x), σ 2

y (x)
)
. (5.5)
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Fig. 5.4 Probabilistic line fitting. Given a set of training points we can fit a line l to them, e.g.
by least squares or RANSAC. In this example l ∈ R

2. Matrix perturbation theory enables us to
estimate a probabilistic model of l from where we can derive p(y|x) (modeled here as a Gaussian)
[80]. Training a regression tree involves minimizing the uncertainty of the prediction p(y|x) over
the training set. Therefore, the training objective is a function of σ 2

y evaluated at the training points

As an example, the function y(x) could be linear. By substituting (5.5) in (5.4) we
obtain

H(S) = 1

|S|
∑

x∈S

1

2
log

(
(2πe)2σ 2

y (x)
)

(5.6)

which when plugged into (5.3) yields the following form of information gain:

I (Sj , θ) ∝
∑

x∈Sj

log
(
σy(x)

) −
∑

i∈{L,R}

( ∑

x∈S i
j

log
(
σy(x)

))
(5.7)

up to a constant scale factor which has no influence over the node optimization pro-
cedure and can be ignored for the purposes of forest training. The variance σ 2

y is the
conditional variance computed from probabilistic linear fitting (see also Fig. 5.4).

Above, we have derived the regression information gain for the simpler case of
1D input and output. It is easy to upgrade the derivation to multivariate variables,
yielding the more general regression information gain below:

I (Sj , θ) =
∑

v∈Sj

log
(|Λy(v)|) −

∑

i∈{L,R}

( ∑

v∈S i
j

log
(|Λy(v)|)

)
(5.8)

with Λy the conditional covariance matrix computed from probabilistic linear fitting.
Note that (5.8) is valid only for the case of a probabilistic linear prediction model
(Fig. 5.3c and Fig. 5.4).
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Fig. 5.5 Example weak learners. The (x1, x2) plane represents the d-dimensional input domain
(independent). The y space represents the n-dimensional continuous output (dependent). The ex-
ample types of weak learner are like in classification: (a) axis-aligned hyperplane; (b) generic
oriented hyperplane; (c) conic section. Alternative weak learners may be considered

By comparison, the “error or fit” energy function used in [45] (for single-variate
output y) is

∑

v∈Sj

(y − yj )
2 −

∑

i∈{L,R}

( ∑

v∈S i
j

(
y − yi

j

)2
)

, (5.9)

with yj indicating the (constant) mean value of y for all training points reaching the
j th node. Note that (5.9) is closely related to (5.8) but limited to constant predictors.
The formulation in (5.9) is related to the trace of the covariance matrix rather than
its determinant, and thus it may be more robust in the case of very small variances.
However, (5.9) produces a point estimate of y rather than a fully probabilistic out-
put. Finally, in (5.8) using an information theoretic formulation allows us to view
classification and regression forests as instances of the same, abstract forest model.

To fully characterize our regression forest model we still need to decide how to
split the data arriving at an internal node.

5.2.5 The Weak Learner Model

As usual, the data arriving at a split node j are separated into its left and right
children (see Fig. 5.1b) according to a binary weak learner of the following form:

h(v, θ j ) ∈ {0,1}, (5.10)

with 0 indicating “false” (e.g. go left) and 1 indicating “true” (e.g. go right). Like in
classification here we consider three types of weak learners: (i) axis-aligned hyper-
planes, (ii) oriented hyperplanes, (iii) conic sections (see Fig. 5.5 for an illustration
on 2D→1D regression). Many alternative weak learner models may be considered.

Next, a number of experiments will illustrate how regression forests work in
practice and the effect of different model choices.
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Fig. 5.6 The effect of the forest size T . (a) Training points. (b) Two different shallow trained trees
(D = 2) split the data into two portions and produce disjoint piece-wise probabilistic linear predic-
tions. (c) Testing posteriors evaluated for all values of x and increasing number of trees. The green
curve denotes the conditional mean E[y|x] = ∫

y · p(y|x)dy. The mean curve corresponding to
a single tree (T = 1) shows a sharp change of direction in the gap. Increasing the forest size pro-
duces smoother class posteriors p(y|x) and smoother mean curves in the interpolated region. All
examples have been run with D = 2, axis-aligned weak learners and probabilistic linear prediction
models

5.3 Effect of Model Parameters

This section discusses the effect of model choices such as the tree depth D, the
forest size T , and the weak learner model on the forest output.

5.3.1 The Effect of the Forest Size

Figure 5.6 shows a first, simple example. We are given the training points shown
in Fig. 5.6a. We can think of those as being randomly drawn from two segments
with different orientations. Each point has a one-dimensional input feature x and a
corresponding scalar, continuous output label y.

A forest of shallow trees (D = 2) and varying size T is trained on those points.
We use axis-aligned weak learners, and probabilistic linear predictor models. The
trained trees are all slightly different from each other as they produce different leaf
models (Fig. 5.6b). During training, as expected each leaf model produces smaller
uncertainty near the training points and larger uncertainty away from them. In the
gap, the actual split happens in different places (due to randomness) along the x axis
for different trees.

The bottom row (Fig. 5.6c) shows the regression posteriors evaluated for all test
positions along the x axis. For each x position we plot the entire distribution p(y|x),



5 Regression Forests 55

where darker red indicates larger values of the posterior. Thus, compact, dark red
regions correspond to higher prediction confidence. Washed out, lighter colors cor-
respond to higher uncertainty.

The mean prediction curve is computed as

y(x) = E[y|x] =
∫

y · p(y|x)dy, (5.11)

with E denoting expectation. The curve y(·) is shown in green in the figure. Note
how a single tree produces a sharp change in direction of the mean curve in the large
gap between the training clusters. However, as the number of trees increases both
the prediction mean curve and its uncertainty become smoother. Thus smoothness of
the interpolating curve is controlled here by the forest size T . We can also observe
how the uncertainty increases as we move away from the training data (both in the
interpolated gap and in the extrapolated regions).

5.3.2 The Effect of the Tree Depth

Figure 5.7 shows the effect of varying the maximum allowed tree depth D on the
same training set as in Fig. 5.6. A regression forest with D = 1 (top row in figure)
corresponds to conventional linear regression (with additional confidence estima-
tion). In this case the training data are more complex than a single line and thus such
a degenerate forest under-fits. In contrast, a forest of depth D = 5 (bottom row in
the figure) yields over-fitting. This is highlighted in the figure by the high-frequency
variations in the predicted mean y(·) and the associated confidence.

5.3.3 Spatial Smoothness and Testing Uncertainty

Figure 5.8 shows four more experiments. Here we plot both the mean prediction (in
green) and the mode

ŷ(x) = arg max
y

p(y|x) (5.12)

in gray. These experiments highlight the smooth interpolating behavior of the mean
prediction in contrast to the more jagged nature of the mode.1 The uncertainty in-
creases away from training data. Finally, notice how in the gaps the regression forest
can correctly capture multi-modal posteriors. This is highlighted by the difference
between mode and mean predictions. In all experiments we used a probabilistic lin-
ear predictor with axis-aligned weak learner, T = 400 and D = 7.

1The smoothness of the mean curve is a function of T . In general, the larger the forest size the
smoother the mean prediction curve.
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Fig. 5.7 The effect of tree depth. (Top row) Regression forest trained with D = 1. Trees are de-
generate (each tree corresponds only to their root node). This corresponds to conventional linear
regression. In this case the data cannot be explained well by a single linear model and thus this
forest under-fits. (Bottom row) Regression forest trained with D = 5. Much deeper trees produce
the opposite effect, i.e. over-fitting. This is evident in the high-frequency, spiky nature of the testing
posterior. In both experiments we use T = 400, axis-aligned weak learners, and probabilistic linear
prediction models

Fig. 5.8 Regression smoothness, multi-modal posteriors and testing confidence. Four more re-
gression experiments. The gray squares indicate labeled training data points. The green curve is
the estimated conditional mean y(x) = E[y|x] = ∫

y · p(y|x)dy and the light gray curve the es-
timated mode ŷ(x) = arg maxy p(y|x). Note the smooth interpolating behavior of the mean over
large gaps and increased uncertainty away from training data. The forest is capable of capturing
multi-modal behavior in the gaps
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5.4 Summary

This chapter has taken the abstract decision forest model introduced in Chap. 3 and
specialized it for regression. Toy experiments have illustrated the effects of various
parameters on the accuracy and confidence of the predicted output. The experiments
are only on synthetic data to convey the main principles of regression forests at an
intuitive level. A more thorough investigation of regression forests is beyond the
scope of Part I, though the chapters in Part II of this book will demonstrate the use of
regression forests in various practical applications. The reader is also invited to refer
to [80], which contains further analysis of the properties of regression forests, as
well as a direct comparison with alternative regression techniques such as Gaussian
processes. Many more examples, animations, and videos are available at [79].

5.5 Exercises and Experiments

Here are a few exercises to allow the reader to gain familiarity with regres-
sion forests. The Sherwood library necessary for the experiments may be down-
loaded from http://research.microsoft.com/projects/decisionforests, and is described
in Chap. 22.

Exercise 5.1

To begin, type sw regression in a command window to get a list of instructions.
To reproduce the results of Fig. 5.6 run the following command:

sw regression exp2.txt /d 2 /t 100

• What is the effect of varying T ?
sw regression exp2.txt /d 2 /t 1
sw regression exp2.txt /d 2 /t 5

• What is the effect of changing D (with fixed T = 100)?
sw regression exp2.txt /d 1 /t 100
sw regression exp2.txt /d 4 /t 100
sw regression exp2.txt /d 6 /t 100

When do you observe under- or over-fitting?

Exercise 5.2

Reproduce the results in Fig. 5.8a by running the command:
sw regression exp3.txt /d 2 /t 200

• Try to answer the same questions as in Exercise 5.1.
• Try using a similar but more noisy training dataset:

sw regression exp4.txt /d 2 /t 200
How does the prediction confidence change?



58 A. Criminisi and J. Shotton

Exercise 5.3

Reproduce Fig. 5.8b and Fig. 5.8d by running the following commands:
sw regression exp7.txt /d 4 /t 200
sw regression exp8.txt /d 4 /t 200
sw regression exp9.txt /d 4 /t 200
sw regression exp10.txt /d 4 /t 200

• Again, explore using different parameter values for D and T .
What impact do these parameters have on over- and under-fitting?

Exercise 5.4

Now run the following command:
sw regression exp11.txt /d 4 /t 200

and try various parameters values.
Is there a set of parameters for which the regression forest works well in the central part of
this “S”-shaped dataset?
Why do you think this regression model does not work properly in the central part?
How is the confidence different between the sides (noisy but unambiguous training data)
and the central part (ambiguous training data)?
How could one improve on this current regression model, e.g. by fitting multiple lines at
each leaf node?
You can refer to [80] for answers to some of these questions.



Chapter 6
Density Forests

A. Criminisi and J. Shotton

Chapters 4 and 5 have discussed the use of decision forests in supervised tasks, i.e.
when labeled training data are available. In contrast, this chapter discusses the use of
forests in unlabeled scenarios. For instance, one important task is that of discovering
the “intrinsic nature” and structure of large sets of unlabeled data. This task can be
tackled via another probabilistic model, the density forest.

Density forests are explained here as an instantiation of our abstract decision
forest model as described in Chap. 3. Given some observed unlabeled data which we
assume have been generated from an underlying probabilistic density function, we
wish to estimate the unobserved generative model itself. More formally, one wishes
to learn the probability density function p(v) which has generated the data. The
problem of density estimation is closely related to that of data clustering. Although
much research has gone into tree-based clustering algorithms, to our knowledge
this is the first time that ensembles of randomized trees have been used for density
estimation.

We begin with a brief literature survey, then we show how to adapt the generic
forest model to the density estimation task and then illustrate advantages and dis-
advantages of density forests. The experiments presented in this chapter are only
illustrative and they do not claim to prove the superiority of density forests with re-
spect to more established techniques. However, they suggest density estimation as a
possible use of forests, in addition to its more common classification and regression
applications. The flexibility of our decision forest model is one of its major strengths
and a key message in this book.

6.1 Density Estimation in the Literature

Here we discuss only a few representative papers out of the vast literature on density
estimation.

A. Criminisi (B) · J. Shotton
Microsoft Research Ltd., 7 J.J. Thomson Avenue, Cambridge CB3 0FB, UK

A. Criminisi, J. Shotton (eds.), Decision Forests for Computer Vision and
Medical Image Analysis, Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-4929-3_6, © Springer-Verlag London 2013
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A successful and commonly used probabilistic density model is the Gaussian
mixture model (GMM), where complex distributions can be approximated via a
collection of simple (multivariate) Gaussian components [28, 195]. Typically, the
parameters of a Gaussian mixture are estimated via the well known Expectation
Maximization (EM) algorithm [28, 88]. EM can be thought of as a probabilistic
variant of the popular k-means clustering algorithm [227]. There is a close relation-
ship between the problem of data clustering and that of density estimation.

Popular, non-parametric density estimation techniques are kernel-based algo-
rithms such as the Parzen–Rosenblatt windows estimator [282]. The advantage
of kernel-based estimation over e.g. more crude histogram-based techniques is in
the added smoothness of the reconstruction which can be controlled by the ker-
nel parameters. Closely related is the k-nearest neighbor density estimation algo-
rithm [28].

In Breiman’s seminal work on forests the author mentions using forests for clus-
tering unsupervised data [44]. However, this goal is achieved via classification, by
introducing dummy additional classes (see also [335]). In contrast, here we use a
well defined information gain-based optimization, which fits well within our unified
forest model. The work in [258] uses an information-theoretic, single-tree-based
clustering approach. Forest-based data clustering has been discussed in [253, 341]
for computer vision applications and will be discussed further in Part II.

A closely related paper is the one in [304], where the authors use single trees
for non-parametric density estimation. There, tree training is achieved by minimiz-
ing an Integrated Squared Error loss function. The binary tree constructed this way
produces an asymptotically consistent and efficient density estimator. Our work on
density forests can be seen as an extension of the ideas set out in [304] to ensembles
of trees. In the spirit of our general forest model the training objective function is
an information-theoretical one, and overfitting is mitigated by the use of multiple
randomly trained trees.

For further reading on general density estimation techniques the reader is invited
to explore the material in [28, 347].

6.2 Specializing the Forest Model for Density Estimation

This section specializes the generic forest model of Chap. 3 for use in density esti-
mation.

Problem Statement The density estimation task can be summarized as follows:

Given a set of unlabeled observations we wish to estimate the probability
density function from which such data have been generated.

Each input data point v is represented as usual as a multi-dimensional feature
response vector v = (x1, . . . , xd) ∈ R

d . The desired output is the entire probability
density function p(v) ≥ 0 s.t.

∫
p(v) dv = 1, for any generic input v. An explana-

tory illustration is shown in Fig. 6.1a. Unlabeled training data points are denoted
with dark circles, while white circles indicate previously unseen test data.
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Fig. 6.1 Input data and density forest training. (a) Unlabeled data points used for training a density
forest are shown as dark circles. White circles indicate previously unseen test data. The red ellipses
indicate clusters associated with leaves in a clustering tree. (b) Density forests are ensembles of
clustering trees. As usual the edge thickness is proportional to the amount of training data through
the edge itself. The red and green colors denote large or small entropy, respectively

What Are Density Forests? A density forest is a collection of randomly trained
clustering trees (Fig. 6.1b). The tree leaves contain simple prediction models such
as Gaussians. So, loosely speaking a density forest can be thought of as a general-
ization of Gaussian mixture models (GMM) with two differences: (i) multiple hard
clustered data partitions are created, one for each tree. This is in contrast to the
single soft clustering generated by the EM algorithm. (ii) The forest posterior is a
combination of tree posteriors. So, each input data point is explained by multiple
clusters (one per tree). This is in contrast to the single linear combination of Gaus-
sians in a GMM. These concepts will become clearer later. Next, we delve into a
detailed description of the model components, starting with the objective function.

6.2.1 The Training Objective Function

Given a collection of points S0 = {v} (note the absence of training labels here), we
train each individual tree in the forest independently. As usual we employ random-
ized node optimization. Thus, restating (3.13) and (3.7), optimizing the j th split
node is done as the following maximization:

θ j = arg max
θ∈Tj

I (Sj , θ) (6.1)

with the generic information gain I defined as

I (Sj , θ) = H(Sj ) −
∑

i={L,R}

|S i
j |

|Sj |H
(
S i

j

)
. (6.2)
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Now we need to define the exact form of the entropy H(S) of a set of points S .
Unlike classification and regression, here the are no ground truth labels. Thus, we
need to define an unsupervised entropy, i.e. one which applies to unlabeled data. As
with a GMM, we use the working assumption of multivariate Gaussian distributions
at the nodes of a clustering tree. Then, the differential (continuous) entropy of a
d-dimensional Gaussian can be shown to be

H(S) = 1

2
log

(
(2πe)d

∣∣Λ(S)
∣∣) (6.3)

with Λ the associated d × d covariance matrix. Consequently, the information gain
in (6.2) reduces to

I (Sj , θ) = log
(∣∣Λ(Sj )

∣∣) −
∑

i∈{L,R}

|S i
j |

|Sj | log
(∣∣Λ

(
S i

j

)∣∣) (6.4)

with | · | indicating a determinant for matrix arguments, or cardinality for set argu-
ments.

Discussion For a set of data points in feature space, the determinant of the co-
variance matrix is a function of the volume of the ellipsoid corresponding to that
cluster. Therefore, by maximizing (6.4) the tree training procedure tends to split the
original dataset S0 into a number of compact clusters (see Fig. 6.1a). The centers of
those clusters tends to be placed in areas of high data density, while the separating
surfaces are placed along regions of low density.

Finally, our derivation of density-based information gain in (6.4) builds upon an
assumption of Gaussian distribution at the nodes. Of course, this is not realistic as
real data may be distributed in much more complex ways. However, this assumption
is useful in practice as it yields a simple and efficient objective function. Further-
more, the hierarchical nature of the trees allows us to construct very complex distri-
butions by mixing the individual Gaussians base functions associated at the leaves.
Alternative measures of “cluster compactness” may also be employed.

6.2.2 The Prediction Model

The set of leaves in the t th tree in a forest defines a partition of the data such that

l(v) :Rd → L ⊂N (6.5)

where l(v) denotes the leaf reached (deterministically) by the input point v, and L
the set of all leaves in a given tree (the tree index t is not shown here to avoid clut-
tering the notation). The statistics of all training points arriving at each leaf node
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Fig. 6.2 A tree density is piece-wise Gaussian. (a, b, c, d) Different views of a tree density pt (v)

defined over an illustrative 2D feature space. Each individual Gaussian component is defined over
the bounded partition cell associated with the corresponding tree leaf. See text for details

are summarized by a single multivariate Gaussian distribution N (v;μl(v),Λl(v)) es-
timated here via maximum likelihood.1 Then, the output of the t th tree is

pt(v) = πl(v)

Zt

N (v;μl(v),Λl(v)). (6.6)

The vector μl denotes the mean of all points reaching the leaf l and Λl the associated
covariance matrix. The scalar πl is the proportion of all training points that reach the
leaf l, i.e. πl = |Sl |

|S0| . Thus (6.6) defines a piece-wise Gaussian density (see Fig. 6.2
for an illustration).

The Partition Function Note that in (6.6) each Gaussian is truncated by the
boundaries of the partition cell associated with the corresponding leaf (see Fig. 6.2).
Thus, in order to ensure probabilistic normalization we need to incorporate the par-
tition function Zt , which is defined as follows:

Zt =
∫

v

(∑

l

πlN (v;μl ,Λl )p(l|v)

)
dv. (6.7)

However, in a density forest each data point reaches exactly one terminal node per
tree. Thus, the conditional p(l|v) is a delta function p(l|v) = δ(l = l(v)) and conse-
quently (6.7) becomes

Zt =
∫

v
πl(v)N (v;μl(v),Λl(v)) dv. (6.8)

As it is often the case when dealing with generative models, computing Zt in high
dimensions may be challenging.

In the case of axis-aligned weak learners it is possible to compute the partition
function via the cumulative multivariate normal distribution function. In fact, the
partition function Zt is the sum of all the volumes subtended by each Gaussian
cropped by its associated partition cell (cuboidal in shape, see Fig. 6.2). Unfortu-
nately, the cumulative multivariate normal does not have a closed form solution.
However, approximating its functional form is a well-researched problem and a
number of good numerical approximations exist [148, 292].

1Better alternatives, perhaps incorporating priors, may be employed here.
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Fig. 6.3 Density forest: the ensemble model. A density forest is a collection of clustering trees
trained on unlabeled data. The tree density is the Gaussian associated with the leaf reached by the
input test point: pt (v). The forest density is the average of all tree densities

For more complex weak learners it may be easier to approximate Zt by numerical
integration over a regular grid, i.e.

Zt ≈ Δ ·
∑

i

πl(vi ) N (vi;μl(vi )
,Λl(vi )), (6.9)

with the points vi generated on a finite regular grid with spacing Δ (where Δ rep-
resents a length, area, volume etc. depending on the dimensionality of the domain).
Also, in general smaller grid cells may yield more accurate approximations of the
partition function at a greater computational cost. Recent, Monte Carlo-based tech-
niques for approximating the partition function are also a possibility [263, 349].
Note that estimating the partition function is necessary only at training time. One
may also think of using density forests with a predictor model other than Gaussian.

6.2.3 The Ensemble Model

Similar to classification and regression, the forest density is given by the average of
all tree densities

p(v) = 1

T

T∑

t=1

pt(v), (6.10)

with each tree density pt (v) defined in (6.6). An illustration is shown in Fig. 6.3.

6.2.4 Discussion

There are similarities and differences between the probabilistic density model de-
fined above and a conventional Gaussian mixture model. For instance, both models
are built upon Gaussian components. However, given a single tree, an input point
v belongs deterministically to only one of its leaves, and thus only one domain-
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Fig. 6.4 The effect of tree depth on density. (a) Input unlabeled data points in a 2D feature space.
(b, c, d) Individual trees out of three density forests trained on the same dataset, for different tree
depths D. A forest with unnecessarily deep trees tends to fit to the training noise, thus producing
very small, high-frequency artifacts in the estimated density

bounded Gaussian component. In a forest with T trees a point v belongs to T

components, one per tree. The ensemble model (6.10) induces a uniform “mixing”
across the different trees. The benefits of such forest-based mixture model will be-
come clearer in the next section. The parameters of a GMM are typically learned
via Expectation Maximization (EM). In contrast, the parameters of a density forest
are learned via a greedy information gain maximization criterion. Both algorithms
may suffer from local minima.

6.3 Effect of Model Parameters

This section studies the effect of the forest model parameters on the output den-
sity. We use many illustrative, synthetic examples, designed to bring to life different
properties, advantages and disadvantages of density forests compared to alternative
techniques. We begin by investigating the effect of two of the most important pa-
rameters: the tree depth D and the forest size T .

6.3.1 The Effect of Tree Depth

Figure 6.4 presents density forest results obtained on simple toy data. Figure 6.4a
shows some unlabeled points used to train the forest. The points are randomly drawn
from two well separated 2D Gaussian distributions.
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Fig. 6.5 The effect of forest size on density. Densities p(v) for six density forests trained on the
same unlabeled dataset for varying T and D. Increasing the forest size T always improves the
smoothness of the density and the forest generalization, even for deep trees

Three different density forests have been trained on the same input set with
T = 200 and varying tree depth D. In all cases the weak learner model was of
the axis-aligned type. Trees of depth 2 (stumps) produce a binary partition of the
training data which, in this simple example, produce perfect separation. As usual
the trees are all slightly different from one another, corresponding to different deci-
sion boundaries (not shown in the figure). In all cases each leaf is associated with a
bounded Gaussian distribution learned from the training points arriving at the leaf
itself. We can observe that deeper trees (e.g. for D = 5) tend to create further splits
and smaller Gaussians, leading to overfitting on this simple dataset. Deeper trees
tend to “fit to the noise” of the training data, rather than capture the underlying na-
ture of the data. In this simple example D = 2 (top row) produces the best visual
results.

As illustrated in the accompanying “Sherwood” software library (see Chap. 22),
the effect of tree depth on overfitting may be mitigated by careful use of Wishart
priors when estimating the leaf Gaussians. Details are omitted here.

6.3.2 The Effect of Forest Size

Figure 6.5 shows the output of six density forests trained on the input data in
Fig. 6.4a for two different values of T and three values of D. The images visualize
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Fig. 6.6 Density forest applied to a spiral data distribution. (a) Input unlabeled data points in their
2D feature space. (b, c, d) Forest densities for different tree depths D. The original training points
are overlaid in green. The complex distribution of input data points is captured nicely by a deeper
forest, e.g. D = 6, while shallower trees produce under-fitted, overly smooth densities

the output density p(v) computed for all points in a square subset of the feature
space. Dark pixels indicate low values and bright pixels high values of density.

We observe that even if individual trees heavily over-fit (e.g. for D = 6), the
addition of further trees tends to produce smoother densities. This is thanks to the
randomness of each tree density estimation and reinforces the benefits of using an
ensemble model. The tendency of larger forests to produce better generalization has
been observed also for classification and regression and it is an important charac-
teristic of forests. Since increasing T always produces better results (sometimes at
an increased computational cost) in practical applications we can just set T to a
“sufficiently large” value, without worrying too much about optimizing its value.

6.3.3 More Complex Examples

A more complex example is shown in Fig. 6.6. The noisy input data are organized
in the shape of a four-arm spiral (Fig. 6.6a). Three density forests are trained on
the same dataset with T = 200 and varying depth D. The corresponding densities
are shown in Fig. 6.6b, c, d. Here, due to the greater complexity of the input data
distribution shallower trees yield under-fitting, i.e. overly smooth and detail-lacking
density estimates. In this example visually plausible results are obtained for D = 6
as the density nicely captures the individuality of the four spiral arms while avoiding
fitting to high-frequency noise. Just like in classification and regression, the param-
eter D can be used to compromise between the output smoothness and the ability to
capture structural details.

6.4 Comparison with Alternative Algorithms

So far we have described the density forest model and analyzed some of its prop-
erties on synthetic examples. This section presents some qualitative comparisons
between density forests and alternative parametric and non-parametric techniques.
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Fig. 6.7 Comparison between density forests and non-parametric estimators. (a) Input unlabeled
points for three different experiments. (b) Forest-based densities. Forests were computed with
T = 200 and varying depth D. (c) Parzen window densities (with Gaussian kernel). (d) K-nearest
neighbor densities. For all algorithms, parameters were optimized to achieve visually smoothest
results. The forest density (b) appears considerably smoother than both (c) and (d)

6.4.1 Comparison with Non-parametric Estimators

Figure 6.7 shows a visual comparison between forest density, Parzen window es-
timation and k-nearest neighbor density estimation. The comparison is run on the
same three datasets of input points. In the first experiments points are randomly
drawn from a five-Gaussian mixture. In the second they are arranged along an “S”
shape and in the third they are arranged along four short spiral arms. Comparison
between the forest densities in Fig. 6.7b and the corresponding non-parametric den-
sities in Fig. 6.7c, d shows visually smoother results for the forest output. Both the
Parzen and the nearest neighbor estimators produce artifacts due to hard choices
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of e.g. the Parzen window bandwidth or the number k of neighbors. Using heav-
ily optimized single decision trees would also produce artifacts. However, the use
of multiple trees in the forest yields the observed smoothness. In this experiment
the parameters of the Parzen window and K-nearest neighbor approaches were op-
timized to produce the best results (visually). These are only qualitative results and
a more rigorous, quantitative validation on standard datasets is necessary before
drawing general conclusions. Next, we compare density forests with variants of the
Gaussian mixture model.

6.4.2 Comparison with GMM EM

Figure 6.8 shows density estimates produced by forests in comparison to various
GMM-based densities for the same input datasets as in Fig. 6.7a. Figure 6.8b shows
the (visually) best results obtained with a GMM, using EM for its parameter esti-
mation [28]. We can observe that on the simpler 5-component dataset (experiment
1) the two models seem to work equally well. However, the “S” and spiral-shaped
examples show very distinct blob-like artifacts when using the GMM model. One
may argue that this is due to the use of too few components. So we increased their
number k and the corresponding densities are shown in Fig. 6.8c. Visual artifacts
persist. Some of them are due to the fact that the greedy EM optimization gets stuck
in local minima. So, a further alternative to improve the GMM results is to add ran-
domness. In Fig. 6.8d, for each example we have trained 400 GMM-EM models
(trained with 400 random initializations, a common way of injecting randomness in
GMM training) and averaged together their output to produce a single density (as
shown in the figure). The added randomness yields benefits in terms of smoothness,
but the forest densities appear still slightly better, especially for the spiral dataset.

In summary, our synthetic experiments suggest that the use of randomness (either
in a forest model or in a Gaussian mixture model) yields improved results. Possible
issues with EM getting stuck in local minima produce artifacts which appear to be
mitigated in the forest model. Let us now look at differences in terms of computa-
tional cost.

6.4.3 Comparing Computational Complexity

Given an input test point v evaluating p(v) under a random-restart GMM model has
cost

T × K × G, (6.11)

with T the number of random restarts (the number of trained GMM models in the
ensemble), K the number of Gaussian components and G the cost of evaluating v
under each Gaussian.
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Fig. 6.8 Comparison with GMM-EM on the same input data as Fig. 6.7. (a) Forest-based den-
sities. Forests were computed with T = 200 and optimized depth D. (b) GMM density with
a relatively small number of Gaussian components. The model parameters are learned via EM.
(c) GMM density with a larger number of Gaussian components. Increasing the components does
not remove the blob-like artifacts. (d) GMM density with multiple (400) random re-initializations
of EM. Adding randomness to the EM algorithm improves the smoothness of the output density
considerably. However, the results in (a) still look smoother

Similarly, estimating p(v) under a density forest with T trees of maximum depth
D has cost

T × (D × B + G) (6.12)

with B the cost of a binary test at a split node.
The cost in (6.12) is an upper bound because the average length of a generic root-

leaf path is less than D nodes. Depending on the application, the binary tests can be
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Fig. 6.9 Drawing random samples from the generative density model. Given a trained density
forest we can generate random samples by: (i) randomly selecting one of the component trees,
(ii) randomly traversing the tree down to a leaf and, (iii) drawing a sample from the associated
Gaussian. The precise algorithmic steps are listed in Table 6.1

very efficient to compute.2 Under these circumstances we may be able to ignore the
term D ×B in (6.12) and the cost of testing a density forest becomes comparable to
that of a conventional, single GMM with T components.

Comparing training costs between the two models is a little harder because
it involves the number of EM iterations (for the GMM model) and the value of
ρ (in the forest). In practical applications (especially real-time ones) minimiz-
ing the testing time is usually more important than reducing the training time.
Finally, testing of both GMMs as well as density forests can be easily paral-
lelized.

6.5 Sampling from the Generative Model

The density distribution p(v) we learn from the unlabeled input data represents
a probabilistic generative model. In this section we describe an algorithm for the
efficient sampling of random data under the learned model. The sampling algorithm
uses the structure of the forest itself (for efficiency) and proceeds as described in
Table 6.1. See also Fig. 6.9 for an accompanying illustration.

In this algorithm for each sample a random path from a tree root to one of its
leaves is randomly generated and then a feature vector randomly generated from
the associated Gaussian. Thus, drawing one random sample involves generating at
most D random numbers from uniform distributions plus sampling a d-dimensional
vector from a domain-bounded Gaussian.

An equivalent and slightly faster version of the sampling algorithm is obtained
by compounding all the probabilities associated with individual edges at different
levels together as probabilities associated with the leaves directly. Thus, the tree

2A split function is applied usually only to a small, selected subset of features φ(v) and thus it can
be computed efficiently, i.e. B is very small.
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Table 6.1 Sampling from the density forest model

Given a density forest with T trees:

1. Draw uniformly a random tree index t ∈ {1, . . . , T } to select a single tree in the forest.
2. Descend the tree:

a. Starting at the root node, for each split node randomly generate the child index with
probability proportional to the number of training points in the edge (proportional to
the edge thickness in Fig. 6.9).

b. Repeat step 2 until a terminal node is reached.
3. At the leaf draw a random sample from the domain bounded Gaussian stored at that leaf

(e.g. using rejection-based sampling, i.e. discarding samples not lying within the cell).

Table 6.2 Sampling from a random-restart GMM

Given a set of T GMMs learned with random restarts:

1. Draw uniformly a GMM index t ∈ {1, . . . , T } to select a single GMM in the set.
2. Select one Gaussian component by randomly drawing in proportion to the associated

priors.
3. Draw a random sample from the selected Gaussian component.

traversal step (step 2 in the algorithm in Table 6.1) is replaced by direct random
selection of one of the leaves.

6.5.1 Efficiency

The cost of randomly drawing N samples under the forest model is

N × (2J + K) (6.13)

with J the cost (almost negligible) of randomly generating a scalar number and K

the cost of drawing a d-dimensional vector from a multivariate Gaussian distribu-
tion.

For comparison, sampling from a random-restart GMM is illustrated in the al-
gorithm in Table 6.2. It turns out that the cost of drawing N samples under such a
model is identical to (6.13). It is interesting to see how although the two algorithms
are built upon different data structures, their steps are very similar. In summary,
despite the added richness in the hierarchical structure of the density forest, its sam-
pling complexity is very much comparable to that of a random-restart GMM.

6.5.2 Results

Figure 6.10 shows results of sampling 10,000 random points from density forests
trained on five different input point sets. The top row of the figure shows the learned
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Fig. 6.10 Sampling results (Top row) Densities learned from hundreds of training points, via den-
sity forests. (Bottom row) Random points generated from the learned forests. We draw 10,000
random points per experiment (different experiments in different columns)

densities. The bottom row shows (with small red dots) random points drawn from
the corresponding forests using the algorithm described in Table 6.1. Such a simple
algorithm produces visually convincing results both for simpler Gaussian mixture
distributions (Fig. 6.10a, b) as well as more complex densities like spirals and other
convolved shapes (Fig. 6.10c, d, e).

6.6 Quantitative Analysis

This section attempts to analyze the accuracy of the density estimation algorithm
with respect to ground truth.

Figure 6.11a shows a given ground truth probability density function. The den-
sity is represented non-parametrically as a normalized histogram defined over a
2D (x1, x2) domain. Using the multivariate inverse probability integral transform
algorithm [91] we randomly sample 5,000 points from the given density (see
Fig. 6.11b). The goal now is as follows: Given the sampled points only, reconstruct a
probability density function which is as close as possible to the initial, ground truth
density.

Thus, a density forest is trained using the sampled points alone.3 The trained
forest is then tested on all points in a predefined domain (not just on the training
points, Fig. 6.11c). Finally, a quantitative comparison between the estimated density
p(v) and the ground truth one pgt(v) can be carried out. The density reconstruction
error is computed here as a sum of squared differences:

E =
∑

v

(
p(v) − pgt(v)

)2
. (6.14)

3No use is made of the ground truth density in this stage.
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Fig. 6.11 Quantitative evaluation of forest density estimation. (a) An input ground truth density
(non-Gaussian in this experiment). (b) Thousands of random points drawn randomly from the
density. The points are used to train four density forests with different depths. (c) During testing the
forests are used to estimate density values for all points in a square domain. (d) The reconstructed
densities are compared with the ground truth and corresponding error curves plotted as a function
of the forest size T . As expected, larger forests yield higher accuracy. In these experiments we
have used four forests with T = 100 trees and D ∈ {3,4,5,6}

Alternatively one may consider the technique in [362]. Note that due to proba-
bilistic normalization the maximum value of the error in (6.14) is 4. The curves
in Fig. 6.11d show how the reconstruction error diminishes with increasing forest
size and depth. We notice that the reconstruction error decreases with the forest
size. Additionally, in other experiments we have observed the overall error to start
increasing again after an optimal value of D (suggesting overfitting for larger tree
depths).

Figure 6.12 shows further quantitative results on more complex examples. In
the bottom two examples some difficulties arise in the central part (where the spiral
arms converge). This causes larger errors. Using different weak learners (e.g. curved
surfaces) may produce better results in those troublesome areas. In Fig. 6.12 using
larger and larger sets of sampled training points would produces lower and lower
reconstruction errors. A more thorough analysis of the consistency of our forest-
based density estimator is deferred to future work.4

4See “consistent estimator” in Wikipedia for a definition of consistency.
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Fig. 6.12 Further quantitative evaluation. (a) Input ground truth densities. (b) Thousands of points
sampled randomly from the ground truth densities directly. (c) Densities corresponding to the
learned density forests. Density values are computed for all points in the domain (not just the
training points). (d) Error curves as a function of the forest size T . Larger forests yields better
accuracy (lower error E). These results are obtained with T = 100 and D = 5. Different parameter
values and using richer weak learners may improve the accuracy in troublesome regions (e.g. at
the center of the spiral arms in the bottom row)

6.7 Summary

This chapter has taken the abstract decision forest model of Chap. 3 and specialized
it for density estimation. Toy experiments have illustrated the effects of various
parameters on the accuracy and confidence of the predicted output. The experiments
are carried out on synthetic data to convey the main principles of density forests
at an intuitive level. Therefore, this chapter cannot claim that density forests are
always better than alternative techniques. However, it suggests the fact that forests
can indeed also be used for density estimation. Many and more rigorous experiments
on real data are necessary to validate quantitatively density forests in comparison
with better established techniques. Additional details, experiments, animations and
videos are available in [79] and in [80].

6.8 Exercises and Experiments

Here are a few exercises to allow the reader to gain familiarity with density forests.
The Sherwood library necessary for the experiments may be downloaded from
http://research.microsoft.com/projects/decisionforests, and is described in Chap. 22.
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Exercise 6.1

To begin, type sw density in a command window to get a list of instructions.
Reproduce the results of Fig. 6.4 by running:
sw density exp1.txt /d 2 /t 3

• Try changing the tree depth D:
sw density exp1.txt /d 1 /t 3
sw density exp1.txt /d 3 /t 3
sw density exp1.txt /d 4 /t 3
sw density exp1.txt /d 5 /t 3

What is the impact on under-, overfitting?
• Try changing the forest size T :

sw density exp1.txt /d 4 /t 3
sw density exp1.txt /d 4 /t 30
sw density exp1.txt /d 4 /t 300

and observe its effect.
• Try running the same experiments many times with less randomness (e.g. with /f 50).

How does this affect the stability of the results?
How does this affect possible overfitting?

Exercise 6.2

Reproduce the results of Fig. 6.8a (‘Experiment 1’) by running:
sw density exp3.txt /d 4 /t 300

• Try varying the values of D and T .
What is the impact on the results?

Exercise 6.3

Reproduce the results of Fig. 6.8a (‘Experiment 2’) by running:
sw density exp7.txt /d 3 /t 300

How is this exercise different from Exercise 5.4?

• Please look at how the density changes as a function of D.
sw density exp7.txt /d 1 /t 300
sw density exp7.txt /d 2 /t 300
sw density exp7.txt /d 4 /t 300
sw density exp7.txt /d 5 /t 300

• Please look at how the density changes as a function of T .
sw density exp7.txt /d 3 /t 3
sw density exp7.txt /d 3 /t 30

You can refer to [80] for answers to some of these questions.
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Exercise 6.4

Reproduce the results of Fig. 6.8a (‘Experiment 3’) by running:
sw density exp4.txt /d 4 /t 300
sw density exp4.txt /d 5 /t 300

Note that Fig. 6.8a was obtained using linear weak learners. Instead Sherwood is limited
to using axis-aligned split functions for density estimation. This explains possible visual
differences.

• Try varying D further:
sw density exp4.txt /d 2 /t 300
sw density exp4.txt /d 3 /t 300
sw density exp4.txt /d 7 /t 300

What is the impact on the estimated density?
• As usual, also try changing the forest size and the amount of randomness.

Exercise 6.5

In the previous exercises, the parameters of the Gaussians at the leaves were obtained by
maximum likelihood (ML) estimation. Here we highlight the effect of using maximum
a-posteriori (MAP) parameter estimates instead. In the latter, the leaf Gaussians are condi-
tioned on a prior model of the parameter values.

• Run the following commands and compare the results:
sw density exp4.txt /d 8 /t 1 /a 0
sw density exp4.txt /d 8 /t 1 /a 10

Here the command line switches /a and /b allow specification of prior hyper-parameters
a and b, where a is the number of ‘effective’ prior observations and b is their variance
(default b = 900).

• Try varying a for example:
sw density exp4.txt /d 6 /t 300 /a 0
sw density exp4.txt /d 6 /t 300 /a 1
sw density exp4.txt /d 6 /t 300 /a 10

Compare your results with those obtained in Exercise 6.4. What is the impact of using
the prior on overfitting at larger tree depths?

• Finally, experiment with varying the amount of randomness and observe its effect.
sw density exp4.txt /d 6 /t 50 /f 5 /a 0
sw density exp4.txt /d 6 /t 50 /f 50 /a 0
sw density exp4.txt /d 6 /t 50 /f 5 /a 2
sw density exp4.txt /d 6 /t 50 /f 50 /a 2



Chapter 7
Manifold Forests

A. Criminisi and J. Shotton

The previous chapter discussed the use of decision forests for estimating the latent
density of unlabeled data. This has led to a forest-based probabilistic generative
model which captures efficiently the “intrinsic” structure of the data itself.

This chapter delves further into the issue of learning the structure of high-
dimensional data as well as mapping it onto a lower dimensional space, while pre-
serving spatial relationships between data points. This task goes under the name of
manifold learning and is closely related to dimensionality reduction and embedding.

This task is important because real data is often characterized by a very large
number of dimensions. However, a careful inspection often shows a much simpler,
lower dimensional underlying distribution (e.g. on a hyperplane, or a curved sur-
face). So, if we can automatically discover the underlying manifold and “unfold”
it, this may lead to more direct visualization, easier data interpretation and perhaps
more efficient algorithms for analyzing such data.

Here we show how decision forests can also be used for manifold learning. Prop-
erties of manifold forests include: (i) computational efficiency (e.g. due to the ease
of parallelization of forest-based algorithms), (ii) automatic selection of discrimi-
native features via information-based optimization, and (iii) all the other benefits
inherited from our general forest model, such as code re-usability. After a brief lit-
erature survey, we discuss details of the manifold forest model, and then show its
properties with examples and experiments.

7.1 Manifold Learning and Dimensionality Reduction
in the Literature

Discovering the intrinsic structure of a dataset (namely manifold learning) and map-
ping it onto a lower dimensional representation (namely dimensionality reduction,
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or embedding) are related tasks which have been investigated at length in the liter-
ature. Perhaps one of the simplest and most common algorithms is principal com-
ponent analysis (PCA) [175]. PCA is based on the computation of directions of
maximum data spread. This is obtained by eigen-decomposition of the data covari-
ance matrix computed in the original space. PCA is a linear model and as such has
considerable limitations for more realistic problems where the data cannot be as-
sumed to lie in a linear space. A popular, non-linear technique is isometric feature
mapping (or IsoMap) [367] which estimates low-dimensional embeddings that tend
to preserve geodesic distances between point pairs.

The task of manifold learning is related to that of estimating geodesic dis-
tances between point pairs in their intrinsic manifold. However, computing such
distances for all possible point pairs may be intractable for high-dimensional
or large datasets. Variants of decision forests have been used in the past for
the efficient, approximate discovery of data neighborhoods and distance estima-
tion [128, 142, 194, 236, 273, 335, 405]. In this scenario both supervised and unsu-
pervised forests have been employed.

This chapter presents manifold forests as an instantiation of our abstract model of
decision forests from Chap. 3. Here we make use of Laplacian eigenmaps [22, 23]
which is a spectral technique for dimensionality reduction.1 Laplacian eigenmaps
try to preserve local pairwise point distances only, with a simple and efficient al-
gorithm. This technique has very close connections with spectral clustering and the
normalized cuts image segmentation algorithm in [336]. Recent probabilistic inter-
pretation of spectral dimensionality reduction may be found in [87, 262]. A genera-
tive, probabilistic model for learning latent manifolds is discussed in [29].

Manifold learning has recently become popular in the medical image analysis
community, e.g. for cardiac analysis [95, 415], registration [149] and brain image
analysis [124, 142]. A more thorough exploration of the vast literature on mani-
fold learning and dimensionality reduction is beyond the scope of this work. The
interested reader is referred to some excellent surveys in [58, 61].

7.2 Specializing the Forest Model for Manifold Learning

The idea of using tree-based random space projections for manifold learning is not
new [114, 160]. Here we show how a whole ensemble of randomized trees can be
used for this purpose, and its advantages. We start by specializing the generic forest
model (Chap. 3) for use in manifold learning.

Problem Statement The manifold learning task is summarized here as follows:

1Multi-dimensional scaling (MDS) [73] or alternative techniques may also be considered.
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Fig. 7.1 Manifold learning and dimensionality reduction. (a) Input, unlabeled data points are de-
noted with circles. They live in a high-dimensional space (here d = 2 for illustration only). A red
outline highlights some selected points of interest. (b) The target space is of much lower dimen-
sionality (here d ′ = 1 for illustration). Geodesic distances and point ordering are preserved

Given a set of k unlabeled observations {v1,v2, . . . ,vi , . . . ,vk} with vi ∈
R

d we wish to find a smooth mapping f : Rd → R
d ′

with f(vi ) = v′
i that

approximately preserves the observations’ relative geodesic distances, with
d ′ � d .

As illustrated in Fig. 7.1 each input observation v (unlabeled) is represented as a
multi-dimensional feature response vector v = (x1, . . . , xd) ∈ R

d . The desired out-
put is the mapping function f(·).

In Fig. 7.1a input data points are denoted with circles. They live in a 2D space.2

We wish to find a function f(·) which maps those points to their corresponding
locations in a lower dimensional space (in the figure d ′ = 1) such that Euclidean
distances in the new space are as close as possible to the geodesic distances in the
original space.

What Are Manifold Forests? As mentioned, the problems of manifold learning
and that of density estimation are closely related. This chapter builds upon density
forests, with much of the mathematical modeling borrowed from Chap. 6. Manifold
forests are also collections of clustering trees. However, unlike density forests, the
manifold forest model requires extra components such as a model of affinity be-
tween data points, and an efficient algorithm for estimating the mapping f(·). The
high-level structure of the forest-based embedding algorithm presented here can be
summarized as follows:

1. A decision forest is used to infer efficiently the k × k affinity matrix W between
all pairs of input unlabeled data points;

2In practical applications the original space is usually of much higher dimensionality than 2D.
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2. Given W, dimensionality reduction is performed by applying any known tech-
nique. As an example, here we employ Laplacian eigenmaps.

Details are presented next.

7.2.1 The Training Objective Function

Using randomized node optimization, forest training is achieved by maximizing a
continuous information gain measure

θ j = arg max
θ∈Tj

I (Sj , θ), (7.1)

with I defined as for density forests:

I (Sj , θ) = log
(∣∣Λ(Sj )

∣∣) −
∑

i∈{L,R}

|S i
j |

|Sj | log
(∣∣Λ

(
S i

j

)∣∣). (7.2)

(These restate (3.13) and (6.4) for completeness.) The previous chapter has dis-
cussed properties and advantages of (7.2).

7.2.2 The Predictor Model

As for the density model, the statistics of all training points arriving at each leaf
node are summarized with a single multivariate Gaussian:

pt (v) = πl(v)

Zt

N (v;μl(v),Λl(v)). (7.3)

See Sect. 6.2.2 for more details.

7.2.3 The Affinity Model

Unlike other tasks, in manifold learning we need to estimate some measure of simi-
larity, affinity, or distance between data points so that we can try and preserve those
inter-point distances after the mapping. When working with complex data in high-
dimensional spaces it is important for this affinity model to be as efficient as pos-
sible. Here we use decision forests to define data affinity in a simple and effective
way.
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As seen in the previous chapter, at its leaves a clustering tree t defines a partition
of the input points

l(v) :Rd → L ⊂N (7.4)

with l a leaf index and L the set of all leaves in a given tree (the tree index is not
shown to avoid cluttering the notation). For a clustering tree t we can compute the
k × k points’ affinity matrix Wt with elements

Wt
ij = e−Qt (vi ,vj ). (7.5)

The matrix Wt can be thought of as un-normalized transition probabilities in Markov
random walks defined on a fully connected graph (where each data point corre-
sponds to a node). The distance Q can be defined in different ways. For example:

Mahalanobis affinity

Qt(vi ,vj ) =
{

d�
ij (Λ

t
l(vi )

)−1dij if l(vi ) = l(vj )

∞ otherwise
(7.6)

Gaussian affinity

Qt(vi ,vj ) =
{

d�
ij dij

ε2 if l(vi ) = l(vj )

∞ otherwise
(7.7)

Binary affinity

Qt(vi ,vj ) =
{

0 if l(vi ) = l(vj )

∞ otherwise
(7.8)

where dij = vi − vj , and Λl(vi ) is the covariance matrix associated with the leaf
reached by the point vi . Note that in contrast to density estimation, here it is not
necessary to compute the partition function Zt (cf. Chap. 6). More complex proba-
bilistic models of affinity may also be used.

The simplest and perhaps most interesting model of affinity in the list above is
the binary one [128, 142, 194, 335]. It can be thought of as a special case of the
Gaussian model with the length parameter ε → ∞ (thus the binary affinity model is
parameter-free). It says that given a tree t and two points vi and vj we assign perfect
affinity (affinity = 1, distance = 0) to the pair (vi ,vj ) if those two points end up in
the same cluster (leaf) and null affinity (infinite distance) otherwise.

One of the biggest problems in many existing manifold learning techniques is
how to define appropriate data neighborhoods that yield good approximations of
pairwise geodesic distances. In contrast, in manifold forests the maximization of an
unsupervised information-theoretical objective function leads to a natural definition
of point neighborhoods and pairwise similarities. In fact, the forest leaves automat-
ically define pairwise relationships between input data points. The interested reader
is also referred to the work in [223] for further reading on the relationship between
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forests and adaptive nearest neighbor approaches. In data-intensive applications, us-
ing an information gain objective may be more natural than having to hand-design
pairwise distances between complex or high-dimensional data points (e.g. think of
the problem of defining distances between images).

7.2.4 The Ensemble Model

A single randomly trained decision tree is not likely to produce affinities which are
representative of the correct pairwise point similarities. This is true especially if
the binary model (with hard 0 or 1 assignments) is employed. However, having a
collection of random trees enables us to collect evidence from the entire ensemble.
This has the effect of producing a smoother affinity matrix, even when the hard
binary model is used. Once again, using a collection of randomly trained trees is
key here. More formally, in a forest of T trees its affinity matrix is defined as

W= 1

T

T∑

t=1

Wt . (7.9)

In a given tree two points may not belong to the same cluster. In some other tree
they do. The averaging operation in (7.9) has the effect of adding robustness to the
pairwise affinities across the graph of all points.

Having discussed how to use forests for computing the data affinity matrix (i.e.
building the graph), next we proceed with the actual estimation of the mapping func-
tion f(·). This second step can be achieved with any existing non-linear dimension-
ality reduction technique. However, here we choose to work with the well known
Laplacian eigenmaps for their simplicity [22, 262].

7.2.5 Estimating the Embedding Function

In Laplacian eigenmaps, given W, a low-dimensional embedding is found using
straightforward linear algebra, as follows. Given a graph whose nodes are the in-
put points, and its affinity matrix W, we first construct the k × k normalized graph-
Laplacian matrix as

L= I− Υ− 1
2WΥ− 1

2 (7.10)

with the normalizing diagonal matrix Υ, such that Υii = ∑
j Wij . Υ is often called

a “degree” matrix [61]. The mapping function f is found via eigen-decomposition
of L. Let e0, e1, . . . , ek−1 be the solutions of (7.10) in increasing order of eigenval-
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ues

Le0 = λ0e0

Le1 = λ1e1

· · ·
Lek−1 = λk−1ek−1

(7.11)

with

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk−1. (7.12)

We ignore the first eigenvector e0 as it corresponds to a degenerate solution (global
translation) and use the next d ′ � d eigenvectors (from e1 to ed ′ ) to construct the
k × d ′ matrix E as follows:

E=
⎛

⎝
| | | | | |

e1 e2 · · · ej · · · ed ′
| | | | | |

⎞

⎠ (7.13)

with j ∈ {1, . . . , d ′} indexing the eigenvectors represented as column vectors. Fi-
nally, mapping a point vi ∈R

d onto its corresponding point v′ ∈R
d ′

is done simply
by reading the ith row of E:

v′
i = f(vi ) = (Ei1, . . . ,Eij , . . . ,Eid ′)� (7.14)

where i ∈ {1, . . . , k} indexes the individual points. Note that d ′ must be ≤ k which
is easy to achieve as we normally wish to have a small target dimensionality d ′. In
summary, the embedding function f remains implicitly defined by its k correspond-
ing point pairs, through the eigenvector matrix E.

In contrast to existing techniques, here, we do not need to fine-tune a length
parameter or a neighborhood size. In fact, when using the binary affinity model the
point neighborhood remains defined automatically by the forest leaves. Of course,
other parameters such as tree depth D are important, and these are discussed further
below.

7.2.6 Mapping Previously Unseen Points

There may be applications where after having trained the forest on a given training
set, further, previously unavailable data points become available. In order to map the
new points to the corresponding lower dimensional space one may think of retrain-
ing the entire manifold forest from scratch. However, a more efficient, approximate
technique consists of interpolating the point position given the already available em-
bedding. More formally, given a previously unseen point v and an already trained
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manifold forest we wish to find the corresponding point v′ in the low-dimensional
space. The point v′ may be computed as follows:

v′ = 1

T

∑

t

1

ηt

∑

i

(
e−Qt(v,vi )f(vi )

)
(7.15)

with ηt = ∑
i e

−Qt (v,vi ) the normalizing constant and the distance Qt(·, ·) computed
by applying (testing) the existing t th tree on v. This interpolation technique works
well for points which are not too far from the original training set. More efficient
alternatives are possible. For instance one may exploit the structure of the forest to
quickly find nearest neighbors [194] and then use the only the retrieved neighbors
for interpolation.

7.2.7 Properties and Advantages

Let us discuss briefly some properties of manifold forests.

7.2.7.1 Ensemble Clustering for Distance Estimation

When dealing with complex data (e.g. images), defining pairwise distances can be
challenging. Here we mitigate that problem by directly using the pairwise affinities
defined by the tree structure itself. In fact, given a set of training points and fixing
some forest parameters such as the number of trees T , the maximum tree depth D,
and the randomness parameter ρ allows us to train a forest and thus implicitly define
the affinities W. This is very different from hand-designing point distances as the op-
timal tree tests and features are automatically selected by minimizing a well defined
energy. The effect of different choices of forest parameters are discussed later.

An Illustrative Example As a toy example, imagine that we have a collection of
holiday photos containing images of beaches, forests and cityscapes (see Fig. 7.2).
Each image can be interpreted as a data point in a very high-dimensional space.
When training a manifold forest we can imagine that e.g. some trees group all beach
photos in a cluster, all forest photos in a different leaf and all cityscapes in yet
another leaf. A different tree, using different features, may mix some of the forest
photos with some of the beach ones (e.g. because of the many palm trees along the
shore), but the cityscape photos are visually very distinct and might remain (mostly)
in a separate cluster. So, forests and beach scenes are more likely to end up in the
same leaf while building photos do not tend to mix with other classes (just as an
example). Therefore, the matrix (7.9) will assign higher affinity (smaller distance)
to a forest–beach image pair than to a beach–city pair. This shows how an ensemble
of multiple hard clusterings can yield a soft distance measure.
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Fig. 7.2 Illustration of affinity smoothing via multiple tree-induced clusterings. Different trees
induce different partitions of the input images. The green partition {{a, b, c}, {d, e, f }, {g,h}} is
induced by tree 1. The red partition {{a, b, c, d}, {e,f }, {g,h}} is induced by tree 2. The corre-
sponding affinity matrices (using the hard, binary model) are also shown. The overlap between
clusters in different trees is captured by the fractional affinity values in the forest matrix W. Aver-
aging affinity matrices across many trees tends to produce more stable and smooth affinities

7.2.7.2 Choosing the Feature Space

An issue with manifold learning is that often one needs to decide ahead of time how
to represent each data point. For instance one has to decide what features and how
many features to use. Thinking of the practical computer vision task of learning
manifolds of images, the difficulty of this decision becomes apparent.

One potential advantage of manifold forests is that we do not need to manually
specify the features to use. We can define the generic family of features (e.g. gra-
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dients, Haar wavelet, or the output of Gabor filter banks). Then the tree training
process will automatically select discriminative features and corresponding param-
eters for each node of the forest, so as to (greedily) optimize the information gain
measure. For instance, in the example in Fig. 7.2 as features we could use averages
of pixel colors within rectangles placed within the image frame. Position and size
of the rectangles would be automatically selected during training. This would allow
the system to learn for example that brown-colored regions are expected towards the
bottom of the image for beach scenes, or that vertical edges are expected in urban
scenes.

7.2.7.3 Computational Efficiency

The bottleneck of this algorithm is the solution of the eigen-system (7.10), which
could be slow for large numbers of input points k. However, in (7.14) only the
d ′ � k bottom eigenvectors are necessary. This, in conjunction with the fact that
the matrix L is usually very sparse (especially for the binary affinity model) can
yield efficient implementations. Please note that only one eigen-system needs be
solved, independent from the forest size T . Additionally, all the individual tree-
based affinity matrices Wt may be computed in parallel.

7.2.7.4 Estimating the Target Intrinsic Dimensionality

The algorithm above can be applied for any chosen dimensionality d ′ of the target
space. If we do not know d ′ in advance (e.g. from application-specific knowledge)
a sensible value can be chosen by: (i) looking at the profile of (ordered) eigen-
values λj , and (ii) selecting the minimum number of eigenvalues corresponding
to a sharp elbow in such profile [22]. This will be illustrated with an experiment in
Sect. 7.3.3. Being able to estimate the optimal manifold dimensionality is a property
of spectral techniques in general, and is not unique to manifold forests.

7.3 Experiments and the Effect of Model Parameters

This section presents some experiments and studies the effect of the forest parame-
ters on the output embedding.
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Fig. 7.3 Different clusterings induced by different trees. (a) The input data in 2D. (b, c, d) Dif-
ferent partitions learned by different random trees in the same manifold forest. Different colors
indicate different Gaussian clusters, each associated with a different leaf node. A given pair of
points will belong to the same cluster (leaf) in some trees and not in others

7.3.1 The Effect of the Forest Size

We begin by discussing the effect of the forest size. In a forest of size T each ran-
domly trained clustering tree produces a different, disjoint partition of the data.3

In the case of a binary affinity model the elements of the affinity matrices Wt are
binary (either two points belong to the same leaf/cluster or they do not). A given
pair of points will belong to the same cluster (leaf) in some trees and not in others
(see Fig. 7.3). Via the ensemble model the forest affinity matrix W is much smoother
since multiple trees enable different point pairs to exchange information about their
relative position. Thus, even if we use the binary distance model, the forest affinity
W is in general not binary. Large forests (large values of T ) correspond to averaging
many tree affinity matrices together, with positive effects in terms of robustness to
noise.

Figure 7.4 shows two examples of non-linear dimensionality reduction. In each
experiment we are given some noisy, unlabeled 2D points distributed according to
an unknown underlying non-linear 1D manifold. We wish to discover the manifold
and map those points onto a 1D real axis while preserving their relative geodesic
distances. The figure shows that such a mapping does not work well when using
a very small number of trees. This is illustrated e.g. in Fig. 7.4b-leftmost and in
Fig. 7.4d-leftmost by the isolated red clusters. However, as the number of trees in-
creases the affinity matrix W better approximates the true (unknown) pairwise graph
affinity. Consequently the color coding (linearly going from dark blue to dark red)
starts to follow correctly the smooth 1D evolution of the points.

3If the input points were reordered correctly for each tree we would obtain an affinity matrix Wt

with a block-diagonal structure.
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Fig. 7.4 Manifold forest and non-linear dimensionality reduction. The effect of T . (a, c) Input 2D
points for two different synthetic experiments: a piece-wise linear point distribution (top row), and
a noisy version of the popular “Swiss Roll” dataset (bottom row). (b, d) Non-linear mapping from
the original 2D space to the target 1D real line is color coded, from dark red to dark blue. In both
examples a small forest (small T ) does not capture correctly the intrinsic 1D manifold. For larger
values of T (e.g. T = 100) the accuracy of such a mapping increases and the ordering and position
of mapped points is more correctly estimated. (e) The color legend. Different colors, from red to
blue, denote the position of the mapped points in their target 1D space

7.3.2 Manifold Learning in Higher Dimensions

This section presents further results, on mapping points from a 3D space into a
target 2D space. Here we are still dealing with relatively low dimensions because
it is difficult to visualize high-dimensional data. However, the theory of manifold
learning applies to any dimensionality.

In all experiments here we use a binary affinity model as we have observed little
difference with respect to e.g. a Gaussian one. In [194] forests with binary affinity
models were used to learn semantic similarities between images.

Figure 7.5 illustrates results on a set of points distributed according to a “Christ-
mas tree” shape. The original, input points live within a 3D space, with their intrin-
sic manifold (unknown to our algorithm) being a 2D rectangle. A manifold forest of
maximum depth D = 4 and T = 100 trees was trained and then used to map those
points into their corresponding 2D positions. Using a 2D color legend (see figure)
we then “painted” the 3D points according to their target 2D position. Figure 7.5b
shows how the colors of the 3D points change smoothly along the underlying shape,
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Fig. 7.5 Mapping from 3D to 2D. In this experiment we map 3D points into their intrinsic (and
unknown) 2D manifold. (a) The input 3D points are randomly distributed along a tree-shaped
surface. The data are viewed from four different viewpoints to aid understanding. The intrinsic
manifold is a 2D rectangle. (b) The corresponding 2D manifold is computed and a 2D color map
used to visualize the evolution of such surface directly in the original 3D space. (c) The original
points mapped into their target 2D surface and color coded. As the forest size increases we obtain
a more refined estimation of the rectangular shape of the intrinsic manifold. For this experiment
we used a forest size of T = 100, with maximum trees depth D = 4, a binary affinity model, and
oriented hyperplane (linear) weak learners

e.g. from orange to green etc. This suggests correct estimation of the underlying
manifold.

Furthermore, Fig. 7.5c shows the points mapped into their target 2D space for
increasing values of T . A small number of trees produces inaccurate mappings, but
as T increases the output manifold becomes more rectangular, as expected. Notice
that our model preserves local distances only. This is, in general, not sufficient to
reproduce sharp 90-degree angles.

Figure 7.6a shows four views of a 3D variant of the popular “Swiss Roll” dataset.
The automatically estimated underlying 2D manifold is again shown via a 2D color
coding of the original points, in Fig. 7.6b. The smoothly varying distribution of
colors confirms convincing results. Additionally, in similar experiments we have
observed that the binary model converges (with T ) a little more slowly than the
Gaussian model, but with clear advantages in terms of computational and model
complexity. In fact, in the Gaussian model the length parameter ε in (7.7) may be
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Fig. 7.6 Unfolding the “Swiss Roll”. A further experiment mapping 3D points into their intrinsic
(and unknown) 2D manifold. (a) The input 3D points are randomly distributed along a 3D “Swiss
Roll” shaped surface. The data points are viewed from four different viewpoints to aid understand-
ing. To add variability, the points position is modulated by a sinusoidal wave, function of x3 (see
rightmost image). The intrinsic manifold is a 2D rectangle. (b) The corresponding 2D manifold is
computed and a 2D color map used to visualize the evolution of such surface directly in the original
3D space. For this experiment we used a forest size of T = 100, with maximum trees depth D = 4,
a binary affinity model, and oriented hyperplane (linear) weak learners

difficult to set appropriately (because it has no immediate interpretation) for com-
plex data. Therefore, a model which avoids this step is advantageous.

7.3.3 Discovering the Manifold Intrinsic Dimensionality

We conclude this chapter by discussing the issue of selecting the optimal dimen-
sionality of the target space. In terms of accuracy it is easy to see that a value of d ′
identical to the dimensionality of the original space would produce the best results
because there would be no loss of information. But one criterion for choosing d ′
is to drastically reduce the complexity of the target space. Thus we definitely wish
to use small values of d ′. As discussed in [22] the spectrum of eigenvalues of the
normalized graph Laplacian presents sharp changes in some specific locations. This
indicates that there are values of d ′ such that if we used d ′ + 1 we would not gain
very much. These special loci can be used to define “good” values for the target
dimensionality.

Figure 7.7 plots the eigenvalue spectra for the “Swiss Roll” dataset and the binary
and Gaussian affinity models, respectively. As expected from theory λ0 = 0 (corre-
sponding to a translation component that we ignore). The sharp elbow in the curves,
corresponding to λ2 indicates an intrinsic dimensionality d ′ = 2 (correct) for this
example. In our experiments we have observed that higher values of T produce a
more prominent elbow in the spectrum and thus a clearer choice for the value of d ′.
Similarly, Gaussian affinities produce slightly sharper elbows than binary affinities.



7 Manifold Forests 93

Fig. 7.7 Discovering the manifold intrinsic dimensionality. The sorted eigenvalues of the normal-
ized graph Laplacian for the “Swiss Roll” 3D example, with (a) the binary affinity model, and
(b) the Gaussian affinity model. In both curves there is a clear elbow in correspondence of λ2 thus
indicating an intrinsic dimensionality d ′ = 2. Here we used forest size T = 100, D = 4 and linear
weak learners

7.4 Summary

This chapter has discussed how decision forests may be used to compute un-
supervised affinities between data points and then use those for non-linear low-
dimensional embedding. For example, we have seen that manifold forests can be
efficient, avoid the need to predefine the features to be used, and can provide guid-
ance with respect to the optimal dimensionality of the target space. On the flip side
it is important to choose the forest depth D carefully, as this parameter influences
the number of clusters in which the data are partitioned and, in turn, the smoothness
of the recovered mapping. In contrast to existing techniques, we also need to choose
a weak learner model to guide the way in which different clusters are separated. The
forest size T is important, though increasing T should always result in higher test
accuracy.

Just like in Chap. 6, the experiments here are just “proof of concepts”. They are
not sufficient to claim that manifold forests are superior to alternative techniques.
However, they suggest that indeed, the same generic forest model can be effectively
used for manifold learning, once again pointing at the flexibility of our general for-
est model. A more thorough experimental validation with real data is necessary to
assess the accuracy of such model in a more rigorous, quantitative manner.

In the next chapter, we discuss a natural continuation of the supervised and un-
supervised models discussed so far, and their use in semi-supervised learning.



Chapter 8
Semi-supervised Classification Forests

A. Criminisi and J. Shotton

Previous chapters have discussed the use of decision forests in supervised problems
(regression and classification) as well as unsupervised ones (density and manifold
estimation). This chapter puts the two things together to achieve semi-supervised
learning. We focus here on semi-supervised classification but the approach can be
extended to regression too.

In semi-supervised classification we have available a small set of labeled train-
ing data points and a large set of unlabeled ones. This is a typical situation in many
practical scenarios. For instance, in medical image analysis, getting hold of numer-
ous anonymized patients scans is relatively easy and cheap. However, labeling them
with ground truth annotations requires experts’ time and effort and thus it is very
expensive. A key question then is whether we can exploit the existence of unlabeled
data to improve classification.

Semi-supervised machine learning is interested in the problem of transferring
existing ground truth labels to the unlabeled (and already available) data. When in
order to solve this problem we make use of the underlying data distribution we talk
of transductive learning. This is in contrast with the inductive learning already en-
countered in previous chapters (Chaps. 4 and 5), where the test data are not available
at training time.

Intuitively, in transductive classification we wish to separate the data so as to:
(i) keep different known class labels in different regions, and (ii) make sure that clas-
sification boundaries go through areas of low data density. This chapter discusses the
use of decision forests for both: (i) transductive classification, and (ii) building an
inductive classifier on top of a previously trained transductive one. We will borrow
concepts from both supervised classification and density estimation.

After a brief literature survey, we show how to adapt the abstract forest model
of Chap. 3 to achieve efficient semi-supervised classification. The use of decision
forests for the related active learning task is also briefly discussed. Numerous illus-
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trative examples and experiments will show advantages and disadvantages of semi-
supervised forests with respect to alternative algorithms.

8.1 Semi-supervised Learning in the Literature

Excellent, recent references for semi-supervised learning and active learning
are [61, 68, 364, 425] which provide a nice structure to the vast amount of liter-
ature on these topics. A thorough literature survey is well beyond the scope of this
chapter and here we focus on a few, key papers.

A popular technique for semi-supervised learning is transductive support vector
machines [172, 395]. Transductive SVM (TSVM) is an extension of the popular
support vector machine algorithm [380] which maximizes the separation of both
labeled and unlabeled data. The experimental section of this chapter will present
comparisons between forests and TSVM.

In [211] the authors discuss the use of decision forests for semi-supervised learn-
ing. They achieve this via an iterative, deterministic annealing optimization. Tree-
based semi-supervised techniques for vision and medical applications are presented
in [53, 60, 94]. Here we introduce a new, simple and efficient semi-supervised forest
algorithm.

8.2 Specializing the Decision Forest Model for Semi-supervised
Classification

This section specializes the generic forest model introduced in Chap. 3 for use in
semi-supervised classification. This model can also be extended to semi-supervised
regression though this is not discussed here.

Problem Statement The transductive classification task may be summarized as
follows:

Given a set of both labeled and unlabeled data points, we wish to associate
a class label to all the already available unlabeled data points.

Unlike inductive classification here all unlabeled “test” data are already available
during training.

The desired output (and consequently the training labels) are of discrete, categor-
ical type (unordered). More formally, given an input point v we wish to associate it
with a discrete class label c. As usual the input is represented as a multi-dimensional
feature response vector v = (x1, . . . , xd) ∈R

d .
We consider two types of input data: labeled vl ∈ L and unlabeled vu ∈ U . This

is illustrated in Fig. 8.1a, where data points are denoted with circles. Colored cir-
cles indicate labeled training points, with different colors denoting different labels.
Unlabeled data are shown in gray. Figure 8.1b, c further illustrate the difference
between transductive and inductive classification.
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Fig. 8.1 Semi-supervised forest: transduction vs. induction. (a) Partially labeled input data points
in their two-dimensional feature space. Different colors denote different class labels. Already avail-
able but unlabeled data are shown in gray. (b) In transductive learning we wish to propagate the
existing ground truth labels to the many unlabeled data points available; and only to those. (c) In
inductive learning we wish to learn (from all available training data) a generic function that can be
applied to previously unavailable test points (denoted with white circles). Training a conventional
classifier on the labeled data only would produce a sub-optimal classification surface (a vertical
line in this case). Decision forests can effectively exploit partially labeled data and address both
transduction and induction within the same efficient framework

What Are Semi-supervised Forests? A transductive forest is a collection of trees
that have been trained on partially labeled data. Both labeled and unlabeled data are
used to optimize an objective function with two components: a supervised compo-
nent and an unsupervised component, as described next.

8.2.1 The Training Objective Function

As usual, forest training is achieved by optimizing the parameters of each internal
node j via

θ j = arg max
θ∈Tj

I (Sj , θ). (8.1)

Different trees are trained separately and independently. The main difference with
respect to other forest types is that here the objective function I must encourage
both: (i) separation of the labeled training data, as well as (ii) separating different
high-density regions from one another. This may be achieved by maximizing the
following mixed information gain:

I (Sj , θ) = Iu(Sj , θ) + αIs(Sj , θ). (8.2)

In the equation above Is is a supervised term and depends on the labeled train-
ing data points only. In contrast, Iu is the unsupervised term and depends on all
data points, both labeled and unlabeled. The scalar parameter α is user defined and
specifies the relative weight between the two terms.
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As in conventional classification, the term Is is an information gain defined over
discrete class distributions:

Is(Sj , θ) = H(S̃j ) −
∑

i∈{L,R}

|S̃ i
j |

|S̃j |
H

(
S̃ i

j

)
(8.3)

with the entropy for the subset S̃ = S ∩ L of training points H(S̃) =
−∑

c p(c) logp(c) with c the ground truth class labels of the points in S̃ .
Similarly, as in density estimation, the unsupervised gain term Iu is defined via

the differential entropy of a multivariate Gaussian density. Therefore:

Iu(Sj , θ) = log
∣∣Λ(Sj )

∣∣ −
∑

i∈{L,R}

|S i
j |

|Sj | log
∣∣Λ

(
S i

j

)∣∣ (8.4)

for all points in Sj ⊆ (U ∪L). Like in Chap. 6 we have made the working assump-
tion of Gaussian node densities.

Having described the basic model components, the next two sections will de-
scribe both the transductive and inductive flavors of semi-supervised forests.

8.3 Transduction Trees for Classifying Already Available Data

This section presents tree-based transduction as a process of label propagation, from
the annotated data points to the available un-annotated points. We are given a par-
tially labeled dataset (as in Fig. 8.2a) which we use to train a transductive forest of
size T and maximum depth D by maximizing the mixed information gain (8.2).

Different trees randomly produce different partitions of the feature space as
shown in Figure 8.2b, c, d. The different colored regions represent different clusters
(leaves) in each of the three partitions. If we use Gaussian models then each leaf
stores a different Gaussian distribution (learned for example by maximum likeli-
hood) for the points within. Label transduction from annotated data to un-annotated
data can be achieved directly via the following minimization:

c
(
vu

) ← c
(

arg min
vl∈L

Q
(
vu,vl

)) ∀vu ∈ U . (8.5)

The function c(·) returns the class index associated with a point in L. The generic
geodesic distance Q(· , ·) is defined as

Q
(
vu,vl

) = min
Γ ∈G

|Γ |−1∑

i=0

d(si , si+1), (8.6)

with Γ a geodesic path (here represented as a discrete collection of points), |Γ | the
path’s length, G the set of all possible geodesic paths and the initial and end points
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Fig. 8.2 Class label transduction in semi-supervised forests. (a) Input points, only four of which
are labeled as belonging to two classes (red and yellow). (b, c, d) Different transductive trees
produce different partitions of the feature space. Geodesic distance minimization enables assigning
labels to the originally unlabeled points. Different regions of high data density tend to be separated
by cluster boundaries. Points in the central region (away from original ground truth labels) tend to
have less stable assignments. In the context of the entire forest this behavior captures uncertainty
of transducted label assignments. (e, f, g) Different trees induce different Gaussian assignments at
the leaves. (h) Label propagation via geodesic path assignment

s0 = vu, s|Γ | = vl, respectively. The local distances d(· , ·) are defined as symmetric
Mahalanobis distances

d(si , sj ) = 1

2

(
dij

�Λ−1
l(vi )

dij + dij
�Λ−1

l(vj )dij

)
(8.7)

with dij = si − sj and Λl(vi ) the covariance associated with the leaf reached by
the point vi in the t th tree. Figure 8.2h shows an illustration. Using Mahalanobis
local distances (as opposed to e.g. Euclidean ones) discourages paths from cutting
across regions of low data density, a key requirement for transductive learning. In
practice, we now have geodesics defined on the space of the automatically inferred
probability density function.

Note that since all points in a leaf are associated with the same Gaussian, the label
propagation algorithm can be implemented very efficiently (though approximately)
by acting on each leaf cluster rather than on individual points. For instance, one
can compute geodesic distances only between the cluster centroids and then assign
the same label to all points within the same cluster. Very efficient geodesic distance
transform algorithms exist [76].

Some example results of label propagation are shown in Fig. 8.2b, c, d. Fig-
ure 8.2e, f, g illustrate the corresponding Gaussian clusters associated with the
leaves. Following label transduction (8.5) each unlabeled points remain associated
with exactly one of the two labels for each tree (Fig. 8.2b, c, d). This label assign-
ment process may be interpreted as each individual tree producing a distribution
put (c|vu) defined for the existing unlabeled data points in U . The function put (c|vu)
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is actually just a delta function centered at one of the class labels of interest, for each
unlabeled input point vu. Thus put (c = ck|vu) ∈ {0,1}.

8.3.1 Transductive Ensemble

The transducted labels assigned to a point vu are (in general) different for each tree,
and they are more stable for points closer to the original supervised data points.
Looking at this variability across the entire set of trees provides us with a means to
estimate assignment confidence. In fact, by using the familiar averaging operation
we have the following transductive forest posterior:

pu
(
c|vu) = 1

T

T∑

t

put
(
c|vu). (8.8)

Thus, in contrast to some other transductive algorithms a semi-supervised forest
may produce a soft, probabilistic output pu(c|vu).

8.4 Induction from Transduction

The previous section has described how to propagate class labels from annotated
data points to already available but un-annotated ones. Here we describe how to infer
a general probabilistic classification rule p(c|v) that may be applied to previously
unavailable test input (v /∈ U ∪L).

If we have already trained multiple transductive trees then they define multi-
ple partitions of the entire input feature space (Fig. 8.2b, c, d). However, many
cells (corresponding to tree leaves) in such partitions may contain no annotated data
(while containing some un-annotated data). Therefore, trying to estimate empirical
class posteriors directly (using only the annotated data) is not possible.

Usually, in the literature, once transduction has been achieved one may think of
using the newly labeled data as ground truth and train a conventional inductive clas-
sifier from scratch. This could be expensive. We next show how one can avoid this
second step and go directly from transduction to induction without further training.

We have two alternatives. First, we could apply the geodesic-based algorithm
in (8.5) to every new test input point and propagate labels that way. However, this
involves T shortest-path computations for each new point v. A simpler alternative
involves constructing an inductive posterior from the existing partitions of the fea-
ture space, as shown next.

After transduction forest training we are left with T trees and their corresponding
partitions (Fig. 8.2b, c, d). After label propagation we have also attached a class
label to all available data (with different trees possibly assigning different classes
to the points in the set U ). Now, just like in supervised classification, counting the
examples of each class arriving at each leaf defines the tree posteriors pt (c|v). These
act upon the entire feature space in which a point v lives and not just the already
available training points.
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Fig. 8.3 Learning a generic, inductive classification rule from partially labeled data. Output classi-
fication posteriors, tested on all points in a rectangular section of the feature space. Labeled training
points are indicated by colored circles (only four of those per image, here). Available unlabeled
data are shown as small gray squares. A classifier trained only on the supervised data points would
separate the left and right sides of the feature space with a straight, vertical line. In contrast here
the separating surface is “S”-shaped because it has been correctly affected by the density of the
unlabeled points. From left to right the number of trees in the forest increases from T = 1 to
T = 100

8.4.1 Inductive Ensemble

Therefore, the inductive forest class posterior has the familiar form

p(c|v) = 1

T

T∑

t=1

pt (c|v). (8.9)

The difference between this and a conventional classification forest (also inductive)
is that training here has been achieved by maximizing a mixed information gain
which takes into consideration both supervised and unsupervised, already available
data. Building this form of inductive forest posterior is efficient as it does not require
training a whole new classifier from scratch.

Figure 8.3 shows classification results on the same data as in Fig. 8.2. Now the
inductive classification posterior is tested on all points within a rectangular section
of the 2D feature space. As expected a larger forest size T produces much smoother
posteriors. Note also how the inferred separating surface is “S”-shaped since it takes
into account the unlabeled points (small gray squares). Finally, we observe that clas-
sification uncertainty is greater in the central region due to its increased distance
from the four ground truth labeled points (yellow and red circles).

8.4.2 Discussion

In the above, we have shown how a relatively simple modification of the training
objective function leads our generic forest model to deal with the task of semi-
supervised classification. It turns out that semi-supervised classification can be used



102 A. Criminisi and J. Shotton

Fig. 8.4 Active learning. (a) Inductive posterior trained with only four annotated points and hun-
dreds of unlabeled ones. The central region shows lower confidence (pointed at by arrows). (b) As
before, but with two additional labeled points placed in regions of high uncertainty in (a). The
confidence of the classifier increases in the central region, and the overall posterior appears sharper

effectively both for transduction and for building an inductive classifier out of exist-
ing transductive trees. The latter is achieved efficiently as it does not necessitate a
further training procedure.

Finally, we should highlight that semi-supervised forests are very different from
e.g. self-training techniques [312]. Self-training techniques work by: (i) training a
supervised classifier, (ii) classifying the unlabeled data, (iii) using the newly clas-
sified data (or perhaps only the most confident subset) to train a new classifier, and
then proceed iteratively. In contrast, semi-supervised forests are not iterative. Ad-
ditionally, they are driven by a clear objective function, the maximization of which
encourages the separating surface to go through regions of low data density, while
respecting the few existing ground truth annotations.

8.5 Examples, Comparisons and Effect of Model Parameters

We now investigate the effect of the forest model parameters on the accuracy
and generalization ability of our semi-supervised forests. The presented illustra-
tive examples are designed to bring to life different properties of semi-supervised
forests. Qualitative comparisons between semi-supervised forests and alternatives
techniques are also presented.

Figure 8.3 has already shown how the (unknown) density of unlabeled data af-
fects the classifier, and the effect of the forest size T . Next, we discuss the effect of
increasing the amount of supervision (the number of labeled points).

8.5.1 The Effect of Additional Supervision, and Active Learning

In the experiment in Fig. 8.4a, the central region of the classification posterior shows
higher uncertainty (dimmer, more orange pixels) than the rest. Thus, as typical of
active learning [54] we might decide to collect and manually annotate additional
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Fig. 8.5 Semi-supervised forests, SVMs and transductive SVMs. (a) Input partially labeled data
points. (b) Semi-supervised forest classification posterior. Uncertainty is visualized through mixed,
orange colors. (c) Unsurprisingly, conventional SVM produces a straight, vertical separating sur-
face as it is not affected by the unlabeled set. (d) Transductive SVM tends to follow regions of low
density. However, TSVM still does not model uncertainty. (a′) As in (a) but with larger noise in the
point positions. (b′) The increased training noise is reflected in lower forest prediction confidence.
(c′, d′) as (c) and (d), respectively, but run on the noisier training set (a′)

data precisely in those low-confidence regions. As illustrated in Fig. 8.4b, adding
just two more annotated data points in the “right” place produces a much more
confident posterior. By the same token, adding extra annotated data close to the
existing supervised set would not make much of a difference.

The importance of having a probabilistic output and thus being able to reason
about uncertainty should be clear here. In fact, it is the confidence of the prediction
(and not the class prediction itself) which guides the selection of additional data to
be annotated.

Next, we compare semi-supervised forests with alternative algorithms.

8.5.2 Comparison with Transductive SVMs

Figure 8.5 shows a comparison between semi-supervised forests, SVMs [380] and
transductive SVMs [172, 395], on the same two input datasets.1

In the figure we observe a number of effects. First, unlike SVMs, the forest cap-
tures uncertainty. As expected, more noise in the input data (either in the labeled or
unlabeled sets, or both) is reflected in lower prediction confidence. Second, while
transductive SVMs manage to exploit the presence of available unlabeled data, they

1In this experiment the SVM and transductive SVM results were generated using the “SVM-light”
Matlab toolbox in http://svmlight.joachims.org/. Parameters were chosen manually to try and pro-
duce the visually best results.
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Fig. 8.6 Handling multiple classes in semi-supervised forests. (a) Partially labeled input data. We
have only four labeled points, each annotated with a different class (different colors for different
classes). (b) Classification results for one-vs.-all SVM. (c) Transduction results for a single deci-
sion tree. Originally unlabeled points are assigned a class via the tree-induced geodesic distances.
(d) Inductive semi-supervised classification posterior. The density of all available data points con-
tribute to the shape of the posterior. Regions of low prediction confidence nicely overlap regions
of low data density

still produce a hard, binary classification; for instance, larger amounts of noise in
the training data are not reflected in the TSVM separating surface.

8.5.3 Handling Multiple Classes

The hierarchical structure of semi-supervised forests allows them to handle both
2-class problems as well as multiple-class (>2) tasks effortlessly.

This is demonstrated in Fig. 8.6 with a four-class synthetic experiment. The in-
put points are randomly drawn from four bi-variate Gaussians. Out of hundreds of
points, only four are manually assigned to the four different classes (denoted by
different colors). Conventional one-vs.-all SVM classification results in hard class
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Fig. 8.7 Semi-supervised forest: effect of depth. (a) Input labeled and unlabeled points. We have
four labeled points and four classes (color coded). (a′) As in (a) but with double the labeled data.
(b, b′) Semi-supervised forest classification posterior for D = 6 tree levels. (c, c′) Semi-supervised
forest classification posterior for D = 10 tree levels. The best results are obtained in (c′), with
largest amount of labeled data and deepest trees

assignments (Fig. 8.6b). Tree-based transductive label propagation results are shown
in Fig. 8.6c (for a single tree). Slightly different assignments are achieved for differ-
ent trees (not shown). The forest-based inductive posterior (computed for T = 100)
is shown in Fig. 8.6d. There, regions of low confidence in the inductive forest pos-
terior are shown to be aligned with regions of low data density.

8.5.4 The Effect of Tree Depth

Figure 8.7 illustrates the effect of the depth parameter D. We have two four-class
examples, with input data points distributed along four-arm spirals. In the top row
we have only four labeled points (and hundreds of unlabeled ones). In the bottom
row we have eight points manually annotated into the four classes. Unsurprisingly,
increasing the depth D from 6 to 10 produces more accurate and confident results.
So does increasing the amount of supervision. Adding further manually annotated
points in the central region would produce better delineation of each individual spi-
ral arm.

8.6 Summary

This chapter has taken the abstract decision forest model of Chap. 3 and special-
ized it for semi-supervised classification. We have also discussed the difference be-
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tween transductive and inductive learning and shown how semi-supervised forests
can achieve both in a unified way.

Toy experiments have illustrated the effects of various parameters on the accu-
racy and confidence of the predicted output. For examples we have analyzed the
effect of additional supervision and its relation to active learning. Once again, here
we have shown not more than proof of concepts. Further experiments on real data
are necessary to assess the validity of this approach in practical applications. Many
more examples, animations and demo videos are available in [79, 80].

8.7 Exercises and Experiments

This section presents exercises on semi-supervised forests. They can be run by us-
ing the now familiar Sherwood software library in http://research.microsoft.com/
projects/decisionforests. As usual, please refer to Chap. 22 for instructions on how
to build and use the library.

Exercise 8.1

To begin, type sw ssclas in a command window to get a list of instructions.
Reproduce the results of Fig. 8.4a by running:
sw ssclas exp1.txt /d 5 /t 100

• What happens if we decrease the forest size to T = 1?
sw ssclas exp1.txt /d 5 /t 1

Run the above command multiple times and observe changes.
Explore further varying T .

• What happens when we vary the tree depth D?
sw ssclas exp1.txt /d 2 /t 100
sw ssclas exp1.txt /d 4 /t 100
sw ssclas exp1.txt /d 6 /t 100
sw ssclas exp1.txt /d 8 /t 100

Exercise 8.2

Compare the results of Fig. 8.4a and Fig. 8.4b by running the commands:
sw ssclas exp1.txt /d 5 /t 200 /split linear
sw ssclas exp4.txt /d 5 /t 200 /split linear

Which has more supervision? Which has higher prediction confidence?
Flip between the two output images to appreciate differences.

Exercise 8.3

Try experimenting with a noisier training set by running:
sw ssclas exp3.txt /d 5 /t 200 /split linear

and observe the confidence in the central region. As usual, experiment with modifying
various other parameters.
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Exercise 8.4

Reproduce the results of the multi-class classification problem in Fig. 8.6 by running:
sw ssclas exp5.txt /d 5 /t 20 /split linear

• Explore using a range of values for parameters T and D. E.g.
sw ssclas exp5.txt /d 5 /t 1 /split linear
sw ssclas exp5.txt /d 5 /t 200 /split linear
sw ssclas exp5.txt /d 2 /t 200 /split linear
sw ssclas exp5.txt /d 10 /t 200 /split linear

What are the effects on prediction confidence?

Exercise 8.5

Here is a more complex 4-class example:
sw ssclas exp9.txt /d 10 /t 200 /a 2 /split linear

• Compare the output of the above experiment with that of
sw ssclas exp10.txt /d 10 /t 200 /a 2 /split linear

What is the effect of the additional supervision?

As usual, analyze the effect of modifying various forest parameters for both sets of input
data.



Chapter 9
Keypoint Recognition Using Random Forests
and Random Ferns

V. Lepetit and P. Fua

In many 3D object detection and pose estimation problems, run-time performance is
of critical importance. However, there usually is time to train the system. We intro-
duce an approach that takes advantage of this fact by formulating the wide-baseline
matching of keypoints extracted from the input images to those found in the model
images as a classification problem. This shifts much of the computational burden to
a training phase and eliminates the need for expensive patch preprocessing, without
sacrificing recognition performance. This makes our approach highly suitable for
real-time operations on low-powered devices.

To this end, we developed two related methods. The first uses random forests
that rely on simple binary tests on image intensities surrounding the keypoints. In
the second, we flatten the trees to turn them into simple bit strings, which we will
refer to as ferns, and combine their output in a Naïve Bayesian manner. Surprisingly,
the ferns, while simpler, actually perform better than the trees. This is because the
Naïve Bayesian approach benefits more from the thousands of synthetic training
examples we can generate than output averaging as usually performed by decision
forests. Furthermore, the more general partition that the trees allow does not appear
to be of great use for our problem.

9.1 Introduction

In many 3D object detection and rigid object pose estimation problems ranging from
augmented reality to visual servoing, run-time performance is of critical importance.
However, there usually is time to train the system before actually using it. Further-
more 3D models, or multiple images from which such models can be built, tend to

Parts of this chapter are reprinted, with permission, from [214], © 2005 IEEE.
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be available. As illustrated in Fig. 9.1, we describe here a technique designed to op-
erate effectively in this context by shifting much of the computational burden to the
training phase so that run-time detection becomes both fast and reliable. Our gen-
eral approach, like many others, relies on matching interest points extracted from
training images with those extracted from input images acquired at run-time, under
potentially large perspective and scale variations. It turns out to be very simple to
implement, and to perform as accurately as SIFT [225] while being faster.

Interest points are usually matched by building affine-invariant descriptors of
the surrounding image patches and comparing them across images. This typi-
cally involves fine scale selection, rotation correction, and intensity normaliza-
tion [225, 249]. It results in a high computational overhead and often requires hand-
crafting the descriptors to achieve insensitivity to specific kinds of distortion.

Instead, we turn this problem into a classification one. More specifically, we con-
sider the set of all possible appearances of each individual object keypoint as a class,
which we refer to as a view set. During training, given at least one image of the tar-
get object, we extract interest points and generate numerous synthetic views of their
possible appearance under perspective distortion, which are then used to train a clas-
sifier. It is used at run-time to recognize the keypoints under perspective and scale
variations by deciding to which view set, if any, their appearance belongs.

We first consider using classification forests [5], as described in Chap. 4, as the
classification technique, because they naturally handle multi-class problems. Fur-
thermore, they are robust and fast, while remaining reasonably easy to train. We
then show that, for our application, the trees can be profitably replaced by non-
hierarchical structures known as ferns to classify the patches. Each one consists of
a small set of binary tests and returns the probability that a patch belongs to any one
of the classes that have been learned during training. These responses are then com-
bined in a Naïve Bayesian way. As before, we train our classifier by synthesizing
many views of the keypoints extracted from a training image as they would appear
under different perspective or scale. Thanks to the Naïve Bayesian approach, the
ferns are more reliable than the trees, while being faster and simpler to implement.
Neither of our approaches require ad hoc patch normalization, and allow for fast
and incremental training.

9.2 Wide-Baseline Point Matching as a Classification Problem

Our approach to object detection and pose estimation relies on matching keypoints
found in an input image against those on a target object O. Once potential cor-
respondences have been established, we apply standard techniques to estimate the
3D pose. Therefore, the critical step in achieving results such as those depicted in
Fig. 9.1 is the fast and robust wide-baseline matching that handling large perspective
and scale changes implies. We formulate this below as a classification problem.

During training, we first select a set K of K prominent keypoints lying on the
object model. At run-time, given an input patch v centered at a keypoint extracted
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Fig. 9.1 Matching a mouse pad in a 1074-frame sequence against a reference image. (a, b)
Matches obtained using ferns in a few frames. The reference image appears at the top and the
input image from the video sequence at the bottom. (c) Scatter plot showing the number of inliers
for each frame. The values on the x- and y-axes give the number of inliers for the ferns and SIFT,
respectively. Most of the time, the ferns match at least as many points as SIFT and often even more,
as can be seen from the fact that most of the points lie below the diagonal

from the input image, we want to decide whether or not its appearance matches that
one of the K keypoints in K. In other words, we want to find for v its class label
c(v) ∈ C = {−1,1,2, . . . ,K}, where the −1 label denotes all the points that do not
belong to K.

In other tasks, such as face detection or character recognition, large training sets
of labeled data are usually available. However, for automated pose estimation, it is
expensive to require a very large number of real sample images. Instead, to achieve
robustness with respect to pose and complex illumination changes, we use a small
number of reference images and synthesize many new views of the object using
simple rendering techniques. For each keypoint, this gives us a sampling of its view
set, the set of all its possible appearances under different viewing conditions. These
samplings are virtually infinite training sets. Figure 9.2 depicts such a sampling for
several keypoints.

9.3 Keypoint Recognition with Classification Forests

Several classification algorithms, such as K-nearest neighbor, support vector ma-
chines or neural networks could have been chosen to implement the classifier Y

introduced in Sect. 9.2. Among those, we have found decision forests [5] to be em-
inently suitable because they naturally handle multi-class problems, and are robust
and fast, while remaining reasonably easy to train. We describe in this section their
application to our specific problem. In the next section, we will show how they can
be further simplified into another classifier we call ferns, while improving the per-
formance.
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Fig. 9.2 (a) One of our reference images used in the evaluations. (b) Warped patches obtained by
applying affine deformations to this image. In each line, the left most patch is the original one and
the others are deformed versions of it. They are used to train our algorithms after the addition of
noise

9.3.1 Random Classification Forests

We briefly recall here how decision forests can be used for classification. Each inter-
nal node of a tree contains a simple test that splits the space of data to be classified,
in our case the space of image patches. Each leaf contains an estimate based on
training data of the posterior distribution over the classes. A new patch is classi-
fied by dropping it down the tree and performing an elementary test at each node
that sends it to one side or the other. When it reaches a leaf, it is assigned prob-
abilities of belonging to a class depending on the distribution stored in the leaf.
Since the numbers of classes, training examples and possible tests are large in
our case, building the optimal tree quickly becomes intractable. Instead, multiple
trees are grown so that each tree yields a different partition of the space of image
patches.

Once the trees indexed by t ∈ {1, . . . , T } are built, their responses are combined
during classification to achieve a better recognition rate than that of a single tree.
More formally, the tree leaves store posterior probabilities p(c | l(t,v)) = pt(c | v),
where c is a label in C and l(t,v) is the leaf of tree t reached by patch v. Such
probabilities are evaluated during training as the ratio of the number of patches of
class c in the training set that reach l to the total number of patches that reach l.
Patch v is classified by considering the average of the probabilities p(c | l(t,v)):

Ŷ (v) = arg max
c

∑

t=1...T

p
(
c | l(t,v)

)
. (9.1)

A drawback of classification forests is their greedy use of memory. Their size in
memory increases exponentially with the depth, and linearly with the number of
trees. For example, a single tree of depth 15 uses about 32 MB for a 200 class prob-
lem. Therefore, the chosen number of trees and their depth are a trade-off between
the computer memory dedicated to store them and the recognition rate. In Sect. 9.5,
we study the influence of these parameters on the recognition rate.
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9.3.2 Node Tests

In our implementation, the tests performed at the nodes are simple binary tests based
on the difference of intensities of two pixels at position p1 and p2 taken in the
neighborhood of the keypoint. We write these tests as

hi

(
v,

(
pi

1,pi
2

)) = [
J
(
v,pi

1

) ≤ J
(
v,pi

2

)]
(9.2)

where J (v,p) is the intensity of patch v at pixel location p, after Gaussian smooth-
ing to reduce influence of noise. Such a test can be seen as a test on the polarity
between the two locations pi

1 and pi
2. In all our experiments, the patches are of size

32 × 32, so that the total number of possible h tests is 219. Fortunately, since real-
world images exhibit spatial coherence, only a very small subset of such candidate
tests is required to yield good recognition rates.

As shown below, a few hundred of these simple tests are usually enough to clas-
sify a patch. This involves only a few hundreds intensity comparisons and additions
per patch, and is therefore very fast. Furthermore, because they only depend on the
order of the pixel intensities between neighbors, they tend to be fairly insensitive to
illumination changes other than those caused by a moving shadow. In other words,
to achieve the robustness to illumination effects demonstrated in Fig. 9.1, our tech-
nique, unlike many others, does not require us to normalize the pixel intensities, for
example by setting the L2 norm of the intensities to one.

9.3.3 Building the Trees

To improve the recognition rate, we use multiple trees that should partition the patch
space in different manners. We experimented with two different methods for build-
ing such trees.

The first method is the one described in Chap. 4: the trees are constructed in the
classical, top-down manner, where the tests are chosen by a greedy algorithm to best
separate the given examples. The expected gain in information is used to evaluate
the separation efficiency.

The second method is much faster and simpler: Instead of picking questions ac-
cording to a criterion, we simply pick a random set, as also done in the extremely
randomized trees [128] approach discussed in Chap. 10. This can be seen as an ex-
treme simplification of the first method. The two locations pi

1 and pi
2 for each node

are picked at random within the patch, independently of the training samples that
fall into the node and of the tests performed further up in the tree.

To compare the two tree-building methods we have introduced, we used them
both on a set of 200 keypoints. This resulted in two sets of trees whose depth was
limited to the same value.

When using the entropy minimizing approach, we first synthesized 100 new
views different for each tree to grow. We then recursively built the trees by trying
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Fig. 9.3 Comparing the classification rates obtained using trees grown in two different manners,
as a function of the number of trees. (a) Without and (b) with patch orientation normalization. The
red curves depict results obtained by selecting tests that maximize the information gain. The green
curves depict results obtained by randomly chosen tests, which result in a small loss of reliability
but considerably reduces the training time. Note that in all cases the normalization lets us achieve
better results with fewer trees. However, when enough trees are used, it does not improve the rates
anymore

ρ different tests at each node and keeping the best one according to the information
gain. For the root node, we chose ρ = 10, a very small number, to reduce the corre-
lation between the resulting trees. For all other nodes, we used ρ = 100d , where d

is the depth of the node.
In the case of the completely random approach to building trees, pi

1 and pi
2 were

simply chosen uniformly at random. For the two sets, the tree depth is limited to a
given maximum depth, and the posterior probabilities are estimated from 1000 new
random views per keypoint.

For this experiment, we used trees with a depth limited to D = 12, which was
found to be a good trade-off between the memory requirements and recognition rate.
After having grown the trees, the posterior probabilities in the terminal nodes were
estimated using 5000 new training images. We then measured the recognition rate R

of the two sets of trees by generating new images under random poses, as the ratio
of the number of correctly recognized patches and the total number of generated
patches. The evolution of R for the two sets of trees with respect to the number of
trees is depicted Fig. 9.3a. Taking the tests at random usually results in a small loss
of reliability at least when the number of trees is not large enough but considerably
reduces the learning time. The time dedicated to growing the trees drops from tens
of minutes to a few seconds on a 2.8 GHz machine.

We also experimented with normalizing the v patches’ orientations both during
training and at run-time to achieve higher recognition rates for a given number of
trees. As in [225] we attribute a 2D orientation to the keypoints that is estimated
from the histogram of gradient directions in a patch centered at the keypoint. Note
that in contrast with [225], we do not require a particularly repeatable method. We
just want it to be reliable enough to reduce variation within classes. Once the orienta-
tion of an extracted keypoint is estimated, its neighborhood is rectified. Figure 9.3b
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compares the recognition rates with this normalization step for the two different
methods of selecting the tests. Taking the tests at random results in a slightly larger
but still small loss of reliability. More importantly, the normalization gives us sig-
nificantly improved rates when using only a small number of trees. However, when
using a large number of trees, the recognition rates are similar with and without the
normalization.

We draw two practical conclusions from these experiments. First, using random
tests is sufficient and keeps the learning time reasonable for practical applications.
Second, the orientation normalization step is not required, but lets us reduce the
number of trees. Therefore the choice of using such a normalization becomes a
trade-off between the amount of time required to normalize and to classify, which
is proportional to the number of trees. However, in the next section, we discuss an
approach closely related to trees that reaches, without normalization, performances
similar to the trees when normalization is used, for an equal amount of computation.

9.4 Keypoint Recognition with Random Ferns

In this section, we will argue that, when the tests are chosen randomly, the power
of our general approach derives not from the tree structure itself but from the fact
that combining groups of binary tests yields improved classification rates. To this
end, we drop the hierarchical structure of the trees and group the tests into a flat
structure that we call a fern. We first show that our ferns fit nicely into a Naïve
Bayesian framework and yield better results and scalability in terms of number of
classes. As a result, we can combine many more features, which is key to increasing
performance.

9.4.1 Random Ferns

Our general approach is still similar to the one taken with the randomized trees in the
previous section: given the patch surrounding a keypoint detected in an image, our
task is to assign it to the most likely class. Let hj = hj (v, (pj

1,pj

2)), j = 1, . . . ,N

be the set of binary features that will be calculated over the patch v we are trying to
classify. Formally, we are looking for

Ŷ (v) = arg max
c

p(c | h1, h2, . . . , hN), (9.3)

where c is a random variable that represents the class. Bayes’ rule yields

p(c | h1, h2, . . . , hN) = p(h1, h2, . . . , hN | c)p(c)

p(h1, h2, . . . , hN)
. (9.4)
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Assuming a uniform prior p(c), since the denominator is simply a scale factor that
is independent from the class, our problem reduces to finding

arg max
c

p(h1, h2, . . . , hN | c). (9.5)

Since the hj features are very simple, we require many (N ≈ 300) for accurate
classification. Therefore a complete representation of the joint probability in (9.5)
is not feasible since it would require estimating and storing 2N entries for each
class. One way to compress the representation is to assume independence between
features. An extreme version is to assume complete independence, that is,

p(h1, h2, . . . , hN | c) =
N∏

j=1

p(hj | c). (9.6)

However, this completely ignores the correlation between features. To make the
problem tractable while accounting for these dependencies, a good compromise is
to partition our features into F groups of size S = N

F
. These groups are what we

define as ferns and we compute the joint probability for features in each fern. The
conditional probability becomes

p(h1, h2, . . . , hN | c) =
F∏

f =1

p(Fk | c), (9.7)

where Ff = {hσ(f,1), hσ(f,2), . . . , hσ(f,S)}, f = 1, . . . ,F represents the f th fern and
σ(f, j) is a random permutation function with range 1, . . . ,N . Hence, we follow a
Semi-Naïve Bayesian [418] approach by modeling only some of the dependencies
between features. The viability of such an approach has been shown by [168] in
the context of image retrieval applications. In this new method, patch v is therefore
classified using:

Ŷ (v) = arg max
c

F∏

f =1

p(Ff | c). (9.8)

This formulation yields a tractable problem that involves F × 2S parameters,
with F between 30–50. In practice, as will be shown in Sect. 9.5, S = 11 yields
good results. F × 2S is therefore in the order of 80,000, which is much smaller than
2N with N ≈ 450 that the full joint probability representation would require. Our
formulation is also flexible since performance/memory trade-offs can be made by
changing the number of ferns and their sizes.

Note that we use randomization both in feature selection and also in grouping.
An alternative approach would involve selecting feature groups to be as independent
from each other as possible. This is routinely done by Semi-Naïve Bayesian classi-
fiers based on a criteria such as the mutual information between features. However,
in practice, we have not found this to be necessary to achieve good performance.
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We have therefore chosen not to use such a strategy that preserves the simplicity
and efficiency of our training scheme and that allows for incremental training.

9.4.2 Training the Ferns

The training phase estimates the class conditional probabilities p(Ff | c) for each
fern Ff and class c, as described in (9.7). For each fern Ff we write these terms as

pk,c = p(Ff = k | c), (9.9)

where we simplify our notations by considering Ff to be equal to k if the base 2
number formed by the binary features of Ff taken in sequence is equal to k. With
this convention, each fern can take K = 2S values and we need to estimate the
pk,c, k = 1,2, . . . ,K under the constraint that their sums over k should be equal
to 1. The simplest approach would be to assign the maximum likelihood estimate to
these parameters from the training samples. For parameter pk,c it is

pk,c = Nk,c

Nc

, (9.10)

where Nk,c is the number of training samples of class c that evaluates to fern value
k and Nc is the total number of samples for class c. These parameters can therefore
be estimated for each fern independently.

In practice however, this simple scheme yields poor results because if no training
sample for class c evaluates to k, which can easily happen when the number of
samples is not infinitely large, both Nk,c and pk,c will be zero. Since we multiply
the pk,c for all ferns, it implies that, if the fern evaluates to k, the corresponding
patch can never be associated to class c, no matter the response of the other ferns.
This would make the ferns far too selective because the fact that pk,c = 0 may
simply be an artifact of the necessarily limited size of the training set. To overcome
this problem we take pk,c to be

pk,c = Nk,c + Nr

Nc + K × Nr

, (9.11)

where Nr represents a regularization term, which behaves as a uniform Dirichlet
prior [28] over feature values. If a sample with a specific fern value is not encoun-
tered during training, this scheme will still assign a non-zero value to the corre-
sponding probability. We have found our estimator to be insensitive to the exact
value of Nr and we use Nr = 1 in all our experiments. However, having Nr be
strictly greater than zero is essential. This tallies with the observation that combin-
ing classifiers in a Naïve Bayesian fashion can be unreliable if improperly done.

In effect, our training scheme marginalizes over the pose space since the class
conditional probabilities P(Ff | c) depend on the camera poses relative to the
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Fig. 9.4 Ferns vs. trees. A tree can be transformed into a fern by performing the following steps.
First, we constrain the tree to systematically perform the same test across any given hierarchy
level, which results in the same feature being evaluated independently of the path taken to get to
a particular node. Second, we do away with the hierarchical structure and simply store the feature
values at each level. This means applying a sequence of tests to the patch, which is what ferns do

object. By densely sampling the pose space and summing over all samples, we
marginalize over these pose parameters. Hence at run-time, the statistics can be used
in a pose independent manner, which is key to real-time performance. Furthermore,
the training algorithm itself is very efficient since it only requires storing the Nk,c

counts for each fern while discarding the training samples immediately after use,
which means that we can use arbitrarily many if needs be.

9.5 Comparing Random Forests, Random Ferns, and SIFT

9.5.1 Empirical Comparisons of Trees and Ferns

Ferns differ from trees in two important respects: as shown in Fig. 9.4, ferns can
be considered as simplified trees. Also, as can be easily seen by comparing (9.1)
and (9.8), the trees average posteriors while the ferns rely on products of conditional
probabilities. Whether or not the differences degrade the classification performance
hinges on whether our randomly chosen binary features are still appropriate in this
context. In this section, we will show that they are indeed. In fact, because our Naïve
Bayesian scheme outperforms the averaging of posteriors, the ferns are both simpler
and more powerful.

To compare randomized trees and ferns, we experiment with three reference im-
ages including the one shown in Fig. 9.2. We extracted stable keypoints from these
images and assigned a unique class id to each of them. The classification is done
using patches that are 32 × 32 pixels in size. To disentangle the influence of the
differences between trees and ferns, we consider four different scenarios:

1. Using randomized trees and averaging of class posterior distributions.
2. Using randomized trees and combining class conditional distributions in a Naïve-

Bayesian way.
3. Using ferns and averaging of class posterior distributions.
4. Using ferns and combining class conditional distributions in a Naïve-Bayesian

way.
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Fig. 9.5 Average percentage of correctly classified image patches over many trials (recognition
rate) for randomized trees of depth 11 and random ferns with 11 features each. (a) Recognition rate
as a function of the number of trees or ferns. Using the Naïve Bayesian assumption gives much
better rates at reduced number of structures, while the fern and tree structures are interchangeable.
(b) Recognition rate as a function of the number of classes. While the naïve combination produces
a very slow decrease in performance, posterior averaging exhibits a much sharper drop

Also the number of features evaluated per patch by the two classifiers is equal in all
cases. As explained in Sect. 9.2, the training and testing sets are obtained from the
reference images. We randomly deform these images with affine deformations that
can arbitrarily rotate the images, skew and scale them over a large range, and add
Gaussian noise. More details on this experimental setup can be found in [280].

In Fig. 9.5a, we plot the results as a function of the number of trees or ferns
being used. We first note that using either flat fern or hierarchical tree structures
does not affect the recognition rate, which was to be expected as the features are
taken completely at random. In contrast, the Naïve-Bayesian combination strategy
outperforms the averaging of posteriors and achieves a higher recognition rate even
when using relatively few structures.

Figure 9.5b shows that the performance of the Naïve-Bayesian combination does
not degrade rapidly with the number of classes, and scales much better than averag-
ing posteriors. For both methods, the required amounts of memory and computation
increase linearly with the number of classes, since we assign a separate class for
each keypoint.

Increasing the fern size S or the tree depth by one doubles the number of param-
eters hence the memory required to store the distributions. It also implies that more
training samples should be used to estimate the increased number of parameters. It
has, however, negligible effect on the run-time speed and larger ferns or trees can
therefore handle more variation at the cost of training time and memory but without
much of a slow-down.

In contrast, adding more ferns or trees to the classifier requires only a linear
increase in memory and computation time. Since the training samples for other ferns
or trees can be reused, it only has a negligible effect on training time. As shown in
Fig. 9.6, for a given amount of memory the best recognition rate is obtained by
using many relatively small ferns. However, this comes at the expense of run-time
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Fig. 9.6 Recognition rate (a) and computation time in seconds (b) as a function of the amount of
memory available and the size of the ferns being used. The number of ferns used is indicated on
the top of each bar and the y-axis shows the fern size. The color of the bar represents the required
memory amount, when using single precision floating numbers. Note that while using many small
ferns achieves higher recognition rates, it also entails a higher computational cost

speed and when sufficient memory is available, a fern size of S = 11 (used in our
experiments) represents a good compromise.

9.5.2 Empirical Comparisons Between SIFT and Ferns

We used the 1074-frame video depicted in Fig. 9.1 to compare ferns against SIFT
for planar object detection. It shows a mouse pad undergoing motions involving a
large range of rotations, scalings, and perspective deformations against a cluttered
background. The graph on the right shows that the ferns can match as many points
as SIFT and sometimes even more.

It is difficult to perform a completely fair speed comparison between our ferns
and SIFT for several reasons. SIFT reuses intermediate data from the keypoint ex-
traction to compute canonical scale and orientations and the descriptors, while ferns
can rely on a low-cost keypoint extraction. On the other hand, the distributed SIFT
C code is not optimized, and the Best-Bin-First KD-tree of [21] is not used to speed
up the nearest-neighbor search. However, it is relatively easy to see that performing
the individual tests of Sect. 9.3.2 requires very little time and most of the time is
spent computing the sums of the posterior probabilities. Computing the SIFT de-
scriptors, which is the most difficult part to optimize, takes about 1 ms on a laptop
without including the time required to convolve the image. In contrast, ferns take
13.5 × 10−3 milliseconds to classify one keypoint into 200 classes on the same ma-
chine. Of course, the ability to classify keypoints fast comes at the cost of requiring
a training stage, which is usually off-line. In contrast, SIFT does not require training
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and for some applications such as matching of arbitrary images, this is still clearly
an advantage.

9.6 Discussion

The key conclusion of our work is that, in our specific context, the Naïve-Bayesian
combination of classifiers as done by the ferns clearly outperforms the averaging of
probabilities, as in the case of random forests. While we do not know of a clear the-
oretical argument explaining the superiority of Naïve-Bayesian techniques for our
purposes, there are pragmatic reasons for choosing them. First, the product models
can represent much sharper distributions [163] (see also Chap. 3). Indeed, when av-
eraging is used to combine distributions, the resulting mixture has higher variance
than the individual components. More intuitively, if a single fern strongly rejects a
keypoint class, it can counter the combined effect of all the other ferns that gives a
weak positive response. This increases the necessity of larger amounts of training
data and the help of a prior regularization term as discussed in Sect. 9.2. Second,
the classification task, which just picks a single class, will not be adversely affected
by the approximation errors in the joint distribution as long as the maximum prob-
ability is assigned to the correct class [92, 116]. We have shown that such a naïve
combination strategy is a worthwhile alternative when the specific problem is not
overly sensitive to the implied independence assumptions.

9.7 Application Example

We briefly present in this section an application of our approach to real-time im-
age annotation. With the recent proliferation of ultra mobile platforms with higher
processing power, there has been a surge of interest in building real-world appli-
cations that can automatically annotate the photos and provide useful information
about places of interest. These applications test keypoint matching algorithms to
their limits under constantly changing lighting conditions and with changes in the
scene texture that reduces the number of reliable keypoints. We have tested the ferns
on such an application that annotates parts of a historical building with 3D structure.
It runs smoothly at frame rate using a standard laptop and an off-the-shelf web cam-
era.

Annotating a 3D object requires training using multiple images from different
viewpoints. Thanks to the ferns approach, we can easily integrate the information
from several images. We then obtain a 3D model for the object using standard struc-
ture from motion algorithms to register the training images followed by dense re-
construction [357]. The resulting fine mesh was too detailed and we approximated
it by a coarser one. Despite its rough structure, this 3D model allows annotation of
important parts of the object and the correct reprojection of this information onto
the image plane under change in viewpoint as depicted by Fig. 9.7.
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Fig. 9.7 Annotation of a cathedral door using a 3D model. The first two images also show the
3D model that is used to estimate the camera position which allows us to reproject the annotation
correctly

9.8 Conclusion

We have presented a simple yet powerful approach for image patch recognition that
performs well even in the presence of severe perspective distortion. The ferns prove
to be particularly adapted, as their “semi-naïve” approach yields a scalable, simple,
fast, and powerful implementation.



Chapter 10
Extremely Randomized Trees and Random
Subwindows for Image Classification,
Annotation, and Retrieval

R. Marée, L. Wehenkel, and P. Geurts

We present a unified framework involving the extraction of random subwindows
within images and the induction of ensembles of extremely randomized trees. We
discuss the specialization of this framework for solving several general problems
in computer vision, ranging from image classification and segmentation to content-
based image retrieval and interest point detection. The methods are illustrated on
various applications and datasets from the biomedical domain.

10.1 Introduction

With the advent of digital imaging technologies (e.g. digital cameras, microscopes,
telescopes), large numbers of images are acquired daily and these could hardly be
processed by human visual inspection. Computer vision techniques are thus highly
desirable in order to automatically search, organize, and annotate large sets of im-
ages acquired in various domains. Depending on the application, user needs, and
available annotations, these tasks could be translated in terms of distinct computer
vision tasks, such as content-based image retrieval (or visual image search), image
classification (or categorization), image annotation (or labeled segmentation), and
interest point detection. In image retrieval, given a training set of images without
any labeling, one may want to retrieve images similar to a new query image. In
supervised image classification, given a set of training images labeled into a finite
number of classes, the goal is to build a model that will be able to predict accurately
the class (among a set of predefined classes) of new, previously unseen images. In
image annotation, given a training set of images with pixel-wise labeling (i.e. every
pixel is labeled with one class among a finite set of predefined classes), the goal is
to build a model that will be able to predict accurately the class of every pixel of
any new, unseen image. In interest point detection, given annotated images where
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interest points coordinates have been localized by experts, the goal is to train models
able to localize those interest points in new, unseen images.

In the early days of computer vision practice, when a researcher approached a
new particular computer vision task, he or she developed a dedicated program to
implement human prior knowledge as a sequence of specific operations (a ‘hand-
crafted approach’), and that often involves the design and calculation of tailored fil-
ters and features capturing expected image characteristics. Although this approach
has proven effective, the design choices were rarely straightforward. Therefore such
a strategy requires a lot of research and development efforts for each specific prob-
lem. In some fields, such as life science research and medical imaging, this engi-
neering approach does not scale well as there are potentially thousands of species,
tissues, organs, and cell phenotypes whose images can be acquired using tens of
sample preparation techniques and imaging modalities.

Motivated by these challenges, we seek to develop generic methods for the ex-
ploitation of various types of image without relying on overly strong assumptions
about the types of pattern to recognize and about the acquisition conditions. In this
chapter, we summarize our work [96, 233–235, 237, 239, 240, 356] and illustrate
the application of our methods on specific problems in life sciences and biomedi-
cal imaging where efficient machine learning and computer vision techniques are
expected to play more and more of an active role in the future [85, 259, 332].

10.2 Random Subwindow-Based Image Analysis

We want to address the general supervised learning problem instantiated for images,
which can be stated as follows:

From a training set {〈Ji, Yi〉|i = 1, . . . ,N} of N images Ji ∈ J each with an output Yi ∈ Y ,
we want to construct a function ŷ : J → Y from the space of images J to the space of
labels Y that predicts as well as possible the output label for any new (test) image Jtest ∈ J .

This general problem formulation includes for example image classification (where
Y is a finite set of discrete classes), regression on images (where Y = R

n), and
image annotation or segmentation (where the output associates a label to each pixel
of an image). It also encompasses many typical computer vision tasks such as scene
or object category recognition, facial feature detection, and age estimation.

The application of standard supervised learning (SL) methods to solve this prob-
lem is not straightforward. First, SL methods typically require that each training set
instance is described by a feature vector of fixed size, while most image datasets
gather images of various sizes. While this can be solved by rescaling all training
images to a common fixed size and then describing them by raw image pixels, stan-
dard SL method are not equipped to explicitly account for dependencies between
features, such as those that arise from the 2D spatial arrangement of image pixels.
One common way to address these issues is to compute a (fixed) number of features
from the training images before applying a standard SL algorithm. However, the
choice of these features is very application dependent. The choice thus requires the
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Fig. 10.1 Generic training and prediction stages. The notation is explained in the text

practitioner either to exploit some particular prior knowledge about the problem,
or to construct a huge set of features that will hopefully contain good ones for the
predictive task at hand.

The alternative generic approach that we have developed consists of: (i) extract-
ing a large number of random subwindows from the training images, transforming
them and then describing them by a fixed number of features; (ii) training a predic-
tive model operating on the subwindows; and (iii) computing the output prediction
for a new image by combining the predictions of its constituent subwindows ob-
tained from the trained model. The main steps of our generic algorithm are depicted
in Fig. 10.1. Each step (and our notation) is detailed below separately for the training
and prediction stages.
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10.2.1 Training Stage

Training consists of five main steps (see the left part of Fig. 10.1):

• Subwindows extraction: The first step is the extraction, in a randomized way,
of a large number Nsw of possibly overlapping subwindows (or patches) si ∈ J ,
i = 1, . . . ,Nsw, within the training images, i.e. subimages of smaller sizes than
the original parent image. This extraction is controlled by several parameters:
– The subwindows sampling distribution: in the simplest case, each subwindow

si is drawn uniformly in the training set of images, i.e. by first randomly select-
ing an image and then a subwindow position within this image. Departure from
uniform sampling allows for example to take into account class imbalance (by
extracting the same number of subwindows from images of each class) or to
select subwindows around some interest points (see Sect. 10.4.3).

– The number of subwindows Nsw: typically, the higher the number of extracted
subwindows, the better the accuracy (as it increases the subwindows training
sample in a subsequent step). The value of this parameter is therefore set ac-
cording to computational constraints rather than according to predictive accu-
racy.

– The subwindows sizes: we typically extract square subwindows whose sizes
can be either fixed a priori or chosen randomly in a given size range.

• Subwindows transformations: Several image transformations/normalizations
can then be applied to these subwindows with the goal of rendering the sub-
window model invariant with respect to corresponding sources of variations. This
step results in a new set of subwindows {s′

1, s
′
2, . . . , s

′
Nsw

}, where s′
i ∈ J is a trans-

formed version of subwindow si .
• Feature extraction: A vector of features v(s) = (x1(s), x2(s), . . . , xd(s)) ∈ F of

fixed size d is computed to describe each subwindow s.
• Output computation: An output ysw(s) is associated to each subwindow s which

is derived from the output of its parent image. Its nature is of course dependent
on the supervised learning problem one wants to address.

• Training: Any supervised learning method is then applied on the training sample
of subwindows to get a prediction model ŷsw(·) defined on the feature space,
which constitutes the final output of the training stage.

10.2.2 Prediction Stage

Making output predictions for a new image using the subwindow predictive model
follows essentially the same steps as for training (see the right part of Fig. 10.1):

• Subwindows extraction, transformation and feature extraction: Subwindows
are extracted from the test image, they are transformed and then turned into a
feature vector. For the subwindows prediction model to be applicable, these three
steps should mimic the corresponding steps applied during the training stage (i.e.
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the same subwindows size selection, transformations, and feature extraction). In
terms of prediction accuracy, the optimal choice is to extract a maximal number
of subwindows from the test image, within the available computational budget.
We denote this number by Nsw,test.

• Per-subwindow output computation: an output prediction ŷsw(v(s)) is obtained
for each subwindow s by applying the learnt SL model on the feature vector v(s)

of this subwindow.
• Output aggregation over subwindows: the predictions by the learnt SL model

over all subwindows of a given test image Jtest are aggregated in order to obtain
a final prediction for this test image, denoted ŷaggr(Jtest) (∈ Y). Again, the ag-
gregation procedure is highly dependent on the nature of the targeted prediction
task, and could range from a simple averaging or voting based on the individual
subwindows’ predictions to much more complex post-processing schemes.

10.2.3 Discussion

Output computation and aggregation depend on the kind of problem we want to
address and will be discussed in Sect. 10.4 in the context of the different types of
target task. We discuss in this section in further detail the other remaining degrees
of freedom of the proposed generic framework, relating to subwindows extraction,
transformation, and feature representation. The description, motivation and discus-
sion of the SL method applied on the subwindows training sample is postponed to
Sect. 10.3.1.

10.2.3.1 Subwindows Extraction

One key step of our generic algorithm is the extraction of subwindows. This extrac-
tion transforms the original prediction problem over images into a similar problem
on smaller images (the subwindows), thus inducing a reduction of the dimension-
ality. In addition, since many subwindows can typically be extracted from a given
image, the resulting subwindows training sample is typically much larger than the
original training sample of images by several orders of magnitude (N � Nsw). The
subwindows SL problem is thus typically much better statistically conditioned than
the original problem. In addition, since the final prediction is obtained by combin-
ing the predictions obtained for several overlapping subwindows in the test image,
there is an averaging effect induced by this combination, which can further improve
predictive accuracy by reducing variance.

The subwindow size is an important parameter of the method: small subwindows
focus on local characteristics within the images, while larger subwindows capture
more global characteristics. In our applications, we have considered two ways to
set this parameter: (i) using a cross-validation wrapper to identify an optimal (fixed)
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size from the training data and (ii) randomizing subwindows sizes during the extrac-
tion. The second approach is typically followed by a rescaling of the subwindows to
a common size (e.g. 16×16 pixels) and therefore introduces invariance with respect
to scaling into the resulting predictive model. Whether or not this is an advantage is
of course application dependent.

10.2.3.2 Subwindows Transformation

The second key ingredient of our approach is subwindows transformation. The main
goal of this step is to inject invariance (or robustness) into the model with respect to
some image alterations. This can be done in essentially two ways. The first one is
to perform some normalization of the subwindows. For example, rescaling variable
size subwindows to a common fixed size is a way to introduce scaling invariance.
The second approach consists of adding to the training sample randomly altered ver-
sions of the original subwindows. This is implemented in our framework by defining
a transformation operator O(s,λ) that depends on some parameter λ and to apply
this operator with a random value of λ to each subwindow. For example, O(s,λ)

could rotate the subwindows by some angle λ to introduce rotation invariance, or
O(s,λ) could randomly mask some parts of the subwindows to introduce invariance
with respect to occlusions.

10.2.3.3 Feature Extraction

Features used to describe the subwindows can in principle be any visual features
that can be computed on the subwindows [218] or even any global features derived
from the parent image of the subwindows. However, good accuracy is often already
obtained by simply describing subwindows by raw pixel values, leaving the task
of determining how to combine these pixels to make good predictions entirely to
the responsibility of the base learner. Using the HSV color space (instead of the
RBG one) is usually preferable as it improves robustness to illumination changes.
Using raw pixels as features has several advantages: the resulting representation is
very fast to compute, it does not discard any informational content (all other visual
features are based on this representation), and it is also not application specific.

10.3 Extremely Randomized Trees

While any supervised learning method can be used to train the subwindow pre-
dictor, decision forests are especially appealing in this context because of their
non-parametric nature, their state-of-the-art predictive accuracy, their low compu-
tational costs, and their flexibility that allow them to tackle various kinds of SL
(and even unsupervised) problems. They furthermore often obtain state-of-the-art
accuracy among all SL methods [56].
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We describe in Sect. 10.3.1 a particular decision forests algorithm called ex-
tremely randomized trees (Extra-Trees) that we have used extensively in the context
of the proposed framework. Section 10.3.2 is dedicated to extensions of this method
to handle more complex output spaces, and Sect. 10.3.3 explains how to derive a
similarity measure, in the form of a kernel, from an ensemble of trees.

10.3.1 Extremely and Totally Randomized Trees

The extremely randomized trees algorithm [128] is a form of decision forest algo-
rithm [44]. It was introduced with the idea of further increasing the randomization
when splitting decision tree nodes, in order to improve accuracy by reducing further
variance and also to reduce training times. Adopting the terminology and notation
of Part I of this book, the algorithm has the following distinct features:

• A forests of T randomized trees is grown, where each tree is built independently
of the other trees in the ensemble from the totality of the training data (i.e. without
any form of training data sampling).

• Split functions considered at tree internal nodes are limited to standard CART-like
axis-aligned splits [45], i.e. binary split functions of the form1

h
(
v, (i, τ )

) = [xi < τ ]. (10.1)

These are parameterized by an attribute number i (1 ≤ i ≤ d) and a discretization
threshold τ ∈R.

• Split function optimization at each tree node j is carried out by first selecting
a set of random candidate splits Tj and then identifying the best one among
them according to the current objective function (see below). The set of candi-
date splits Tj = {(i1, τ1), . . . , (iρ, τρ)} is obtained at each node j by randomly
selecting ρ pairs of features and discretization thresholds, where the features il
are sampled uniformly and without replacement from the set of all d features
(i.e., il 	= im,∀1 ≤ l < m ≤ ρ) and the discretization thresholds τl are not opti-
mized but are uniformly drawn between the minimal and maximal values of the
features il in the training instances that have reached this node. This additional
threshold randomization, compared to e.g. random forests [44], was initially mo-
tivated by the high variance resulting from threshold optimization in the original
CART method, as experimentally observed in [127], and is shown to improve
further accuracy by decreasing variance [128].

• We stop growing a tree branch as soon as the output or the feature vector is con-
stant in the node, or the number of instances that reach a node is (strictly) lower
than some parameter nmin.

1We restrict our discussion here to numerical features and refer the interested reader to [128] for
the treatment of discrete features.
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Any objective function can be used within the Extra-Tree algorithm to optimize
splits at tree interior nodes. In classification, we use a particular normalized version
of the information gain [128] and in regression, we use output variance reduction
as used in CART [45]. In classification, we attach to each leaf conditional class
probabilities. In regression, we attach to each leaf the average output value among
training points reaching this leaf. Both kinds of predictions are averaged over the T

individual tree predictions when testing a new example with the ensemble.
The main parameters of the algorithm are the number of trees T , the number

of inputs randomly selected at each node ρ, and the stopping criterion parameter
nmin. Since the larger the value of T , the better the resulting forest accuracy, T is
usually chosen based on computational considerations only. Because of the averag-
ing effect related to the extraction of subwindows, the number of trees required to
reach convergence within our framework is typically much smaller than in standard
classification or regression settings. Typical default values of ρ are ρ = √

d where
d is the feature vector dimensionality, and ρ = d , respectively for classification and
regression. We also advise setting nmin to its minimal value in classification (i.e.,
nmin = 2, corresponding to no pruning), while using slightly greater value of nmin

might help on some noisy regression problems (e.g. nmin ∈ [5,10]).
When ρ is set to 1, only one random split is considered at each tree node and

the tree structure is therefore totally independent of the output values in the training
sample. We call such trees totally randomized trees as their randomization is pushed
further than extremely randomized trees. These trees are, for most SL problems, not
as good as extremely randomized trees, because they lack robustness with respect
to noisy features. However, they are very fast to construct and they can be exploited
to derive a similarity measure for content-based image retrieval even in the absence
of an output (see Sect. 10.4.1).

10.3.2 Multiple Output Trees

The basic classification and regression tree models can be extended to handle the
prediction of multiple outputs simultaneously, i.e., a vectorial output y ∈ R

n in the
case of regression, or y ∈ Cn, where C = {c1, c2, . . . , c|C|} is the finite set of all
possible classes, in the case of classification. The extension only modifies the ob-
jective function used to evaluate splits and the way predictions are computed at tree
leaves. The former is simply taken as the sum of the individual objective functions
for each individual output. Predictions at leaf nodes in regression and classification
are, respectively, vectors in R

n or n conditional class probability distributions, each
corresponding to one of the n outputs. Both are estimated from the output of the
training examples that reach the leaf (see e.g. [32, 130] for a treatment of multiple
output trees). Within the general image analysis framework, this extension allows
for example to address image annotation problems, where the output associates a
class label to each pixel of the input image (or subwindows).
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10.3.3 Kernel View of Tree-Based Ensembles

In addition to providing output predictions, an ensemble of trees can be used to
define a similarity metric between input feature vectors [128, 142, 194, 236, 238]
(see also Chap. 7). Denoting by NL the number of training examples of the training
sample that are located at a certain leaf L of the t th tree of the ensemble, this tree
defines the following similarity between any two input feature vectors v and v′ [128,
236, 238]:

kt

(
v,v′) =

{ 1
NL

if v and v′ reach the same leaf L in t

0 otherwise.
(10.2)

This expression amounts to considering that two examples are very similar if they
fall in a same leaf that contains a very small subset of training examples.2

The similarity induced by an ensemble of T trees is furthermore defined by

kens
(
v,v′) = 1

T

T∑

t=1

kt

(
v,v′). (10.3)

This expression amounts to considering that two examples are similar if they are
considered similar by a large proportion of the trees. The spread of the similarity
measure is controlled by the parameter nmin: when nmin increases, training examples
tend to fall more often in the same leaf which yields a higher similarity according
to (10.3). On the other hand, the number of trees controls the smoothness of the
similarity. With only one tree, the similarity (10.2) is very discrete as it can take
only two values when one of the examples is fixed. The combination of several trees
provides a finer-grained similarity measure.

When tree ensembles are considered at the last step of our generic subwindow-
based framework, similarity (10.3) defines a similarity measure between subwin-
dows and it can furthermore be used to derive a similarity between two images J

and J ′ as follows (see also [194]):

k
(
J,J ′) = 1

|S(J )||S(J ′)|
∑

s∈S(J ),s′∈S(J ′)
kens

(
v(s),v

(
s′)), (10.4)

where S(J ) and S(J ′) are the sets of (transformed) subwindows that have been
extracted from J and J ′, respectively. The similarity between two images is thus
the average similarity between all pairs of their subwindows (described by their
features).

Since (10.3) defines a positive kernel [128] (among subwindows), (10.4) actually
defines a positive (convolution) kernel among images [334]. This means that this

2Intuitively, as it is less likely a priori that two examples will fall together in a small leaf, it is
natural to consider them very similar when they actually do.
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similarity measure has several nice mathematical properties. For example, it can be
used to define a distance metric and it can be directly exploited in the context of
kernel methods [334]. We will exploit it in Sect. 10.4.1 for content-based image
retrieval and in Sect. 10.4.2 to train an SVM-based classifier as a post-processing of
the decision forests model.

10.4 Applications

This section presents several illustrations of the general framework introduced here
for various computer vision applications. We present problems in the order of in-
creasing amounts of available ground truth, starting with unsupervised content-
based image retrieval, then supervised image classification, interest point detection,
and ending with fully labeled supervised image segmentation.

10.4.1 Content-Based Image Retrieval

Content-based image retrieval, or visual image search, aims at retrieving a ranked
list of images similar to a given query image, based on the visual content of these
images.

10.4.1.1 Method

We proposed in [236, 238] to exploit the similarity measure and indexing structure
of totally randomized tree ensembles induced from a set of subwindows randomly
extracted from unlabeled samples of images, as described in Sect. 10.3.3. In [240],
we adapted the approach for the more realistic setting where images are distributed
across multiple cooperating servers and added in an incremental fashion, using fully
data-independent, randomized indexing structures (vectors of random tests some-
how similar to random ferns or randomized lists [279, 401]) instead of totally ran-
domized trees, but still using the similarity measure of Sect. 10.3.3. In this approach,
random subwindows are propagated into visual words using vectors of predefined,
random tests on raw pixel values shared between all distributed servers. In contrast
with our approach, traditional bag-of-words approaches (such as k-means and ran-
dom forests) are not so well suited in a distributed and incremental context, since
their mapping structures are dataset-dependent and consequently the image simi-
larities inferred by a given local server using these latter methods are not directly
comparable to the similarities computed by other servers, and not equivalent to the
case where all data are available at a single point. Furthermore, these local data-
driven structures are not designed with the possibility to be easily updated, as the
structure of their visual dictionary (e.g. the number of clusters) is fixed a priori.
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Fig. 10.2 Three query images (left) and the retrieval results (right) ranked according to their sim-
ilarity, using the distributed, incremental approach [240] on the IRMA-2005 database (N = 9000
classified into 57 categories). Overall results are significantly better than baselines e.g. using near-
est neighbors with Euclidian distance computed on downscaled 32 × 32 images [240]

10.4.1.2 Illustration

Our experiments in [240] showed that the simpler approach with vectors of random
tests yields interesting results on real-world, varied images, while being straightfor-
ward to implement. Although the recognition results were slightly inferior to those
obtained by supervised classification or retrieval using extremely randomized trees
[240], these results were practically relevant as illustrated for example in Fig. 10.2.
Moreover, we believe that the incremental and distributed capabilities of this method
make it a good candidate for very large image retrieval studies at the web scale, or
within distributed networks of specialized image repositories (e.g. hospitals). We re-
cently implemented this algorithm as a web service within a rich internet application
in order to provide biomedical experts with instantaneous, automatic, ontology term
suggestions thanks to automatic learning from annotations made previously by other
experts and incorporated into the image repository. It allowed users to speed-up and
consolidate annotations of various tissues and cells in high-resolution microscopy
images [241].

10.4.2 Image Classification

In image classification, given a set of training images labeled into a finite number of
classes, the goal is to build a model that will be able to predict accurately the class
(among a set of predefined classes) of new, unseen images.

10.4.2.1 Method

The general framework presented in Sect. 10.2 was initially motivated by image
classification problems, first in [233] then in subsequent works [234, 235, 237]. For
these applications, the output associated to each subwindow is the class of its parent
image and the final class prediction for an image is obtained by voting the class
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predictions of its subwindows, obtained by the extremely randomized tree model.
Moosman et al. [254] proposed an alternative aggregation scheme that first uses
extremely randomized trees to build a global “bag-of-visual words” representation
of the training images, and then trains a linear SVM model over this global image
representation to perform the final image classification. In the bag-of-visual words
representation, images are represented by a (large) feature vector, where each com-
ponent corresponds to a tree leaf of the ensemble (corresponding to a “visual word”)
and is equal to the proportion of image subwindows falling into that leaf (or a 0/1
binarization of this proportion). This approach is actually equivalent to exploiting
the image kernel (10.4) within an SVM model.

10.4.2.2 Illustration

In our previous work, this approach was applied on various image types including
identification of man-made objects, buildings, faces, handwritten digits, etc. Here
we illustrate the approach on a dozen datasets from the biomedical domain. These
datasets are summarized in Table 10.1 and illustrated in Fig. 10.3. They are related
to the classification of:

• tissue types in cancer research (BREASTCANCER, LYMPHOMA) and aging
studies (AGEMAP-FAGING);

• cell phenotypes related to diseases such as cancer (SEROUS), acute lymphoblas-
tic leukemia (ALL-IDB2) autoimmune diseases (HEP2) or protein subcellular
patterns (CHO, SUBCELLULAR); and

• human body parts using X-rays (IRMA2005) or other imaging modalities
(MMODALITY).

Parameters were set as follows in our evaluation. We extracted Nsw = 106 training
subwindows of random sizes that were all rescaled into 16 × 16 patches and de-
scribed by raw pixel values (HSV). Other parameters were only weakly optimized.
In particular, we first optimized the ranges of original subwindow sizes by cross-
validation, then a few values for other parameters were evaluated (number of trees
from T = 1 to T = 40, minimum node sample size from nmin = 1 (unpruned trees)
to 50000, node test filtering parameter ρ from 1 (totally randomized trees) to the
maximum values). For the variant using an SVM as a post-processing, we consid-
ered both binary or frequency visual word counts. In Table 10.1, we only report
the best result for each dataset (detailed results, including a comparison with other
methods, are included in [232]). One can observe that low error rates are achieved
on a wide variety of problems without the need to design manually specific fea-
tures, neither to precompute large sets of image transforms and statistical features,
as done in other approaches (e.g. [278]). Our experiments also show that the range
of original subwindow sizes has a strong influence on the accuracy; some problems
(such as tissue recognition) require subwindows of small random sizes, while larger
subwindows close to the original image sizes are better for other tasks (such as cell
recognition).
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Fig. 10.3 We consider the generic problem of supervised image classification without any precon-
ception about image classes as illustrated by the variability of biomedical classification datasets
tackled in our experiments

10.4.3 Interest Point Detection

In interest point detection, given annotated images where interest points coordinates
have been localized by experts, the goal is to train models able to localize those
interest points in new, previously unseen images. Examples of application include
the detection of facial features (e.g. eyes) in face recognition, or point matching for
object tracking [213] (see also Chap. 9).

10.4.3.1 Method

We exploit manually annotated images where interest points coordinates have been
localized by experts. While other works have formulated point matching as a single-
output classification problem [213], we considered in [356] various approaches that
first extract subwindows around points of interest and at other randomly chosen
positions within images, describe these patches with visual features, and then build
either a classification or a regression model, with single or multiple outputs. In the
classification scheme, the output of each subwindow is a binary class stating whether
the central pixel of the subwindow is (close to) the interest point or not. In the
regression scheme, the subwindows output is the distance between the central pixel
of the subwindows and the interest point. The predicted position of the interest point
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Table 10.1 Summary of classification dataset characteristics and our classification results

Datasets # Images # Classes Short description Our error
rate

AGEMAP-FAGING 850 4 Mouse liver tissues at different
development stages [331]

3.62 %

ALL-IDB2 260 2 Normal and lymphoblast cells [93] 0.19 %

BINUCLEATE 40 2 DAPI images of binucleate and regular
cells [331]

0.25 %

BREAST-CANCER 361 3 Biopsies of breast cancer (H&E
straining) [46]

6.39 %

C.ELEGANS 237 4 C.elegans muscles at different ages [331] 25.47 %

CHO 327 5 Subcellular localizations [34] 2.31 %

HEP2 721 6 Cells in indirect immunofluorescence
[288]

2.64 %

IRMA 2005 10000 57 Human body radiographs [90] 11.3 %

LYMPHOMA 374 3 Biopsies of lymphoma (H&E staining)
[331]

4.05 %

MMODALITY 5010 8 Biomedical imaging modalities [285] 20.95 %

POLLEN 6039 7 Pollen grains [331] 3.10 %

RBC 5062 3 Red-blood cells [181] 29.14 %

RNAI 200 10 Cell populations following RNA
interference [331]

11.0 %

SEROUS 3652 11 Cells from serous effusion cytology [216] 24.04 %

SUBCELLULAR 948 10 Subcellular localizations [33] 11.63 %

TERMINALBULB 970 7 DIC of pharynx terminal bulb [331] 53.04 %

within a new test image is then taken as the median point of all subwindows central
pixels that are predicted to be the interest point with the highest probability by the
classification model or that are predicted to be the closest to the interest point by
the regression model. When several interest points need to be detected, we proposed
either to build a model separately for each interest point or to exploit multiple output
trees (see Sect. 10.3.2) to predict jointly all interest points. The latter typically gives
better results.

10.4.3.2 Illustration

We proposed in [356] to apply our method to automatically detect specific inter-
est points in microscopy images with the aim of performing automatic morpho-
metric measurements in the context of development research studies using the Ze-
brafish model. The Zebrafish is a well-known model organism increasingly used
for biological studies on development, gene function, toxicology, and pharmacol-
ogy, and whose skeleton can be easily observed at different stages of development
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Fig. 10.4 Images of Zebrafish embryos (left: ventral view of cartilaginous structures high-
lighted by alcian blue staining, middle: mineralized bone revealed by alizarin red staining, right:
bright-field image of a larva). Colored dots represent automatically predicted interest points cor-
responding to the position of distinct cartilaginous/bone elements. The multiple output regression
approach was applied using the same parameter settings for all three imaging modalities [356]

using staining agents. From these images, one seeks to perform morphometric mea-
surements of the cartilage skeleton to describe the effects of different experimental
conditions such as chemical treatments or gene knock-downs (see Fig. 10.4 for ex-
ample images). Our study [356] showed that all detection schemes give good results
provided that parameters are well chosen. In particular, we found that the parame-
ter which has the strongest influence is the subwindow sizes, and that the multiple
output setting is less sensitive to parameter choices than the single-output setting.

10.4.4 Image Segmentation

In image semantic segmentation, given a training set of images with pixel-wise la-
beling (i.e. every pixel is labeled with one class among a finite set of predefined
classes), the goal is to build a model that will be able to predict accurately the class
of every pixel of any new, previously unseen image.

10.4.4.1 Method

In [96], we proposed two methods to address pixel-wise image labeling following
the random subwindows framework of Sect. 10.2. In both cases, random subwin-
dows of fixed sizes are sampled densely in training images and represented by raw
pixel values. In the first approach, the output associated to each subwindow is the
class of its central pixel. The labels of all pixels of a test image are then obtained
by exhaustively extracting and classifying all subwindows within the test image.
In the second approach, the output of a subwindow consists of the classes of all
subwindow pixels that are predicted jointly by using a multiple output model (see
Sect. 10.3.2). At prediction time, all subwindows of the test images are extracted
and tested by the multiple output model and a class prediction is obtained for each
image pixel by averaging the predictions for all subwindows that contain that pixel.
The latter variant therefore introduces an averaging effect at prediction time, which
is in general very beneficial.
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Fig. 10.5 (a) Histology image of a whole mouse lung. (b) Binary prediction of tumoral tissues
using the multiple output classification approach

10.4.4.2 Illustration

We evaluated the approach on several benchmarks in [96] with images of natural
scenes, roads, and cells, and in [239] on thermal infra red hyperspectral imagery
to detect gaseous traces. In both cases, the multiple output approach yields better,
smoother, results than the single, central pixel, approach. In Fig. 10.5 we illustrate
the multiple output method for the recognition of tumoral tissues in whole-slide
histology images in the context of lung cancer studies where the final objective is
to assess the effects of novel treatments on tumor sizes. From the computer vision
point of view, this application involves the segmentation of different classes of tis-
sues (tumors, bronchus, blood vessels, cartilage, etc.) and their quantification within
high-resolution images (typical image sizes are tens or hundreds thousands of pix-
els wide by tens or hundreds thousands of pixels tall). Manual annotations were
created using our collaborative web-based annotation platform [241] and then en-
sembles of trees were built to detect tumoral tissues (binary problem), hence derive
surface measurements. Given the high-throughput acquisition procedure (a single,
high-resolution, image can be acquired in less than five minutes using modern scan-
ning microscopes), fast processing is a strong requirement and therefore we only
used raw pixel values in HSV colorspace to describe subwindows.

10.5 Conclusions and Future Works

This chapter has presented a generic framework for the analysis of images based on
random subwindow extraction and the use of extremely randomized trees. Build-
ing on the flexibility of tree-based ensemble methods, this framework can be used
to solve various computer vision tasks ranging from content-based image retrieval
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and image classification to interest point detection and image segmentation. The
framework was illustrated on a variety of biomedical problems.

All possible instances of the proposed general framework have not been explored
yet, and given its generality, there exist many possible directions for further work.
Among these, we believe that it would be worth exploring more sophisticated ag-
gregation schemes, in order to extend further the range of applications covered by
the approach or to improve its accuracy for some tasks. In our framework, the sub-
window SL model is trained to predict as accurately as possible subwindow outputs
independently from the way these outputs will be aggregated in the final predic-
tion. Coupling more tightly the subwindow model training and the aggregation step
could improve accuracy significantly for some tasks. Multiple output trees are a key
component of our image segmentation solution. In [130], we have proposed an ex-
tension of multiple output trees to handle kernelized output spaces, i.e. any output
space over which a kernel can be defined. The exploitation of these output ker-
nelized trees within our framework could further extend its applicability to image
analysis tasks. Finally, in our previous work [129], we proposed a generic segment-
and-combine approach for the classification of topologically structured data such
as images, time-series, and texts. The present chapter extends the segment-and-
combine idea far beyond supervised classification but focuses on the analysis of
images. The application of similar ideas to structured data such as time-series and
text documents is straightforward and certainly worth being investigated as future
work.
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Chapter 11
Class-Specific Hough Forests for Object
Detection

J. Gall and V. Lempitsky

We present a method for the detection of instances of an object class, such as cars
or pedestrians, in natural images. Similarly to some previous work, this is accom-
plished via the generalized Hough transform, where the detections of individual ob-
ject parts cast probabilistic votes for possible locations of the centroid of the whole
object; the detection hypotheses then correspond to the maxima of the Hough im-
age that accumulates the votes from all parts. However, whereas previous meth-
ods detect object parts using generative codebooks of part appearances, we take a
more discriminative approach to object part detection. Towards this end, we train a
class-specific Hough forest, which is a decision forest that directly maps the image
patch appearance to the probabilistic vote about the possible location of the ob-
ject centroid. We demonstrate that Hough forests improve the results of the Hough-
transform object detection significantly and achieve state-of-the-art performance for
several classes and datasets.

11.1 Introduction

The appearance of objects of the same class such as cars or pedestrians in natural
images vary greatly due to intra-class differences, changes in illuminations, and
imaging conditions, as well as object articulations. Therefore, to ease the detection
(localization) most of the methods take a bottom-up, part-based approach, where the
detections of individual object parts (features) are further integrated to reason about
the positioning of the entire object.

This chapter is based on the CVPR’09 conference paper [118].
Parts of this chapter are reprinted, with permission, from [118], © 2012 IEEE.
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Toward this end, the Hough-transform-based method of Leibe et al. [208, 210]
learns the class-specific implicit shape model (ISM), which is essentially a code-
book of interest point descriptors typical for a given class. After the codebook is
created, each entry is assigned a set of offsets with respect to the object centroid
that are observed on the training data. At runtime, the interest point descriptors in
the image are matched against the codebook and the matches cast probabilistic votes
about possible positions of the object in the scale-space. These votes are summed
up into a Hough image, the peaks of it being considered as detection hypotheses.
The whole detection process can thus be described as a generalized class-specific
Hough transform [15].

Implicit shape models can integrate information from a large number of parts.
They also demonstrate good generalization as they are free to combine parts ob-
served on different training examples. Furthermore, the additive nature of the Hough
transform makes the approach robust to partial occlusions and atypical part appear-
ances. However, such codebook-based Hough transform comes at a significant com-
putational price. Firstly, a large generative codebook is required to achieve good
discrimination. Secondly, the construction of large codebooks involves solving dif-
ficult, large-scale clustering problems. Finally, matching with the constructed code-
book is time-consuming, as it is typically linear in the number of entries.

In this chapter, we develop a new Hough-transform-based detection method,
which takes a more discriminative approach to part detection. Rather than using
an explicit codebook of part appearances, we learn a direct mapping between the
appearance of an image patch and its Hough vote. We demonstrate that such a map-
ping can be efficiently accomplished within the decision forest framework. Thus,
given a dataset of training images with the bounding box annotated samples of the
class instances, we learn a class-specific forest that is able to map an image patch
to a probabilistic vote about the position of an object centroid. At runtime, such a
class-specific Hough forest is applied to the patches in the test image and the result-
ing votes are accumulated in the Hough image, where the maxima are sought. The
approach is illustrated in Fig. 11.1.

Related to our work, the idea of replacing generative codebooks with random
forests has been investigated in the context of image classification (Chap. 10) and
semantic segmentation (Chap. 15) in [235, 253, 324, 341]. For instance, Marée et
al. [235] sample a random set of various sized patches from an image and use ran-
dom forests for classifying the patches. The class confidences of all patches are
then accumulated to classify the entire image. Within the prior work, most simi-
lar to Hough forests are the classification random forests used to obtain the unary
potentials within the LayoutCRF method [403].

While Hough forests are in many aspects similar to other random forests in com-
puter vision, they possess several interesting specific properties, motivated by their
use within the generalized Hough transform framework:

• The set of leaf nodes of each tree in the Hough-forest can be regarded as a dis-
criminative codebook. Each leaf node makes a probabilistic decision whether a
patch corresponds to a part of the object or to the background, and casts a proba-
bilistic vote about the centroid position with respect to the patch center.
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Fig. 11.1 For each of the three patches highlighted in (a), the pedestrian class-specific Hough
forest casts a vote about the possible location of a pedestrian centroid (b) (each color channel cor-
responds to the vote of a sample patch). Note the weakness of the vote from the background patch
(green). After the votes from all patches are aggregated into a Hough image (c), the pedestrian can
be detected as a peak in this image. The enclosing bounding box (d) can be estimated by taking
the average bounding box for pedestrians centered at the detection peak

• The trees in a Hough forest are built directly to optimize their voting performance.
In other words, the training process builds each tree so that the leaves produce
probabilistic votes with small uncertainty.

• Each tree is built based on the collection of patches drawn from the training data.
Importantly, the building process employs all the supervision available for the
training data: namely, whether a patch comes from a background or an object,
and, in the latter case, which part of the object it comes from.

Our method also benefits from the advantages typical of other random-forest appli-
cations. Thus:

• Decision forests can be trained on large, very high-dimensional datasets without
significant overfitting and within a reasonable amount of time (hours). For our
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method, this permits the use of a discriminative, high-dimensional (up to 8192D)
patch appearance descriptor and large training datasets.

• Decision forests are very efficient at runtime, since matching a sample against
a tree is logarithmic in the number of leaves. Therefore, rather than restricting
our attention to the interest points as in [208, 210], our method is able to sample
patches densely, while maintaining similar or better computational performance.

• Decision forests can tolerate a significant amount of labeling noise and errors in
the training data. Therefore, our method permits the use of bounding box anno-
tated training data as opposed to pixel-accurate segmentations used by previous
Hough-based methods [208, 210].

11.2 Related Work

The set of leaves of each tree in a Hough forest can be regarded as a discrimi-
native Hough voting codebook. Importantly, while generative codebooks for ISMs
[208, 210] are constructed via unsupervised clustering of appearances, each tree in
a Hough forest is constructed in a supervised way. Such a supervision allows to
optimize the codebook entries to produce more reliable votes in Hough space.

Opelt et al. [277] also investigated the use of the supervised construction of
Hough voting codebooks with the emphasis on contour shape features. Their gener-
ative codebook is constructed by picking the exemplars that tend to produce more
reliable votes at train time. They further increase the discriminative power of their
model by picking the small ensemble of original entries and combining them within
the boosting framework. Our approach, therefore, shares the idea of supervision for
the voting codebook construction with [277], but does this within a discriminative
random forest framework.

Similarly to our approach, Marée et al. [235] and Moosmann et al. [253] as well
as Shotton et al. [341] and Schroff et al. [324] train random forests on image patches
in order to use them as discriminative codebooks. Those codebooks, however, are
employed for image categorization or semantic segmentation rather than Hough-
based object detection. As such, no geometric information but only class labels are
stored at leaves and are used as a supervision for trees construction, as opposed to
our method.

Winn and Shotton [403] build decision forests in order to distinguish between the
patches from different parts of the object as well as from background (with a similar
purpose to Hough forests). However, they consider a pure classification problem by
splitting the object into a predefined number of parts treated as independent classes.
This is because the output of their forests is used on a later stage as unary terms for
a discrete-labeled conditional random field. Instead, as Hough forests are used for
voting, their output are essentially the votes in the continuous domain. Thus, unlike
[403], we avoid splitting objects into discrete parts.

Simultaneously with our work, Okada [275] has suggested a very similar frame-
work for object detection and hand tracking. Following our work, Hough forests
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and similar approaches have been extended to the tasks of tracking [120, 135]
(Chap. 12), action recognition [120, 409], head and body pose estimation [102, 131]
(Chap. 12), among others.

11.3 Building Hough Forests

Following the notation of Chap. 3, decision forests can be used for predicting dis-
crete class labels c or regressing continuous labels y. Object detection, however,
involves both classifying patches belonging to an object and using them to regress
the location of the object as illustrated in Fig. 11.1. The Hough forests are therefore
trained to satisfy both objectives and the leaf statistics capture p(c|v) and p(y|c,v),
where the continuous label y depends on the discrete label c.

In the context of object detection, v is the appearance vector of a patch
(Fig. 11.1(a)), c is the class label of the patch, and y is the offset vector of the
patch to the centroid of the object. The leaf statistics capture the probability of an
object c being at the relative location y of a patch with appearance v (Fig. 11.1(b)):

p(y, c|v) = p(y|c,v)p(c|v). (11.1)

The probabilities from all patches are then collected to get evidence for the absolute
position of an object (Fig. 11.1(c)). This can be performed by Hough voting and the
forests are therefore called Hough forests, but the forests can also be regarded as a
combination of regression and classification forests (see also [131, 134]).

11.3.1 Training Data and Leaf Information

For Hough forests, each tree is constructed based on a set of training patches
S0 = {(v, c,y)}. The patches are sampled from the training collection of images,
some of them containing examples of the class of interest with known bounding
boxes. The patches sampled from the background (background patches) are as-
signed the class label c = 0, while the patches sampled from the interior of the
object bounding boxes (object patches) are assigned c = 1. Each object patch is also
assigned a 2D offset vector y equal to the offset from the centroid of the bounding
box to the center of the patch. For a background patch, y is undefined. In our current
implementation, scale invariance is not introduced during training, and therefore the
object patches are sampled from the pre-scaled object images to have approximately
the same size. However, patches with various sizes and orientations as in Marée et
al. [235] (Chap. 10) could also be used. To achieve the scale invariance at runtime,
we apply Hough forests at several scales as described in Sect. 11.4.

For each leaf node l in the constructed tree, the information about the patches that
have reached this node (denoted with Sl) at training time is stored. Thus, we store
the proportion cl = p(c = 1|l) of the object patches (e.g. cl = 1 means that only
object patches have reached the leaf) and the list Dl = {y ∈ Sl} of the offset vectors
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Fig. 11.2 For the set of training images shown in (a), we visualize the data recorded in some of
the leaves of the constructed class-specific Hough forest in (b). These data consist of the object
patch proportion cl = p(c = 1|l) and the list of the offset vectors for object patches Dl . Note that
the leaves of the Hough forest form a discriminative class-specific codebook: the training examples
falling inside each of the first three leaves can be associated with different parts of a car

corresponding to the object patches. The leaves of the tree thus form a discriminative
codebook with the assigned information about possible locations of the centroid
(Fig. 11.2). At runtime, this information is used to cast the probabilistic Hough
votes about the existence of the object at different positions (Sect. 11.4).

11.3.2 Patch Appearance and Binary Tests

During training, each non-leaf node in each tree is assigned a binary test applicable
to the appearance of a patch v. At both train and test time, the patches have a fixed
size, e.g. 16-by-16 pixels, and the appearance is defined by the extracted feature
channels, which may correspond to raw intensities, derivative filter responses, etc.
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Thus, the appearance of a patch can be written as v = (J 1, J 2, . . . , J f ), where each
J j is a 16-by-16 image and f is the number of channels.

The binary tests on a patch appearance h(v) → {0,1} can be defined in any of
the ways discussed in Chap. 3 (e.g. coordinate splits, linear splits, etc.). In our ex-
periments, we have chosen pairwise-comparison tests. Such a test is defined by a
channel a ∈ {1,2, . . . , f }, two positions (p, q) and (r, s) in the 16-by-16 image,
and a real handicap value τ . The test h(v; θ), where θ = (a,p, q, r, s, τ ) is then
defined as

h(v; θ) =
{

0, if J a(p, q) − J a(r, s) < τ

1, otherwise.
(11.2)

Such a test simply compares the values of a pair of pixels in the same channel with
some handicap.

11.3.3 Tree Construction

Below, for clarity and with a slight abuse of notation, we treat the sets of patches
as multi-sets of patch class labels as well as the sets of patch displacements. In
general, the tree construction for Hough forests follows the popular decision forest
framework. Each tree is constructed recursively starting from the root. During con-
struction, each node receives a subset S of training patches. If the depth of the node
is equal to the maximal one (D = 15) or the number of patches is small (|S| ≤ 20),
the constructed node is declared a leaf and the leaf vote information (cl,Dl ) is ac-
cumulated and stored. Otherwise, a split node is created and an optimal binary test
h(·; θ∗) is chosen from a large pool of randomly generated binary tests T . The train-
ing patch set that has arrived to the node is then split according to the chosen test
into two subsets SL and SR that are passed to the two newly created children nodes;
after that the recursion proceeds.

Since Hough forests perform classification and regression, both objectives need
to be optimized during training [134]. Therefore, prior to choosing a binary test for
a non-leaf node, we choose between the two objectives. The classification objective
(see Chap. 4) maximizes the information gain using Shannon entropy:

H(S) = −
∑

c∈{0,1}
p(c) log

(
p(c)

)
. (11.3)

The regression objective (see Chap. 5) looks at the distribution of the displace-
ment vectors y of the object patches and ignores the background patches. In our
implementation, we look at the variance of the displacement:

H(S) =
∑

(v,c,y)∈S
c=1

‖y − ȳ‖2, (11.4)

where ȳ is the mean displacement over the object patches. This objective is propor-
tional to the differential entropy, when displacements are modeled using an isotropic
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Gaussian parametric model (see Chap. 5). While the parametric measure is not the
optimal regression objective for object detection as depicted in Fig. 11.2, it was
preferred for computational efficiency reasons.

Given the two criteria, the binary test is chosen as follows. Given a training set
of patches S reaching the non-leaf node, we first generate a pool of pixel tests by
sampling a, p, q , r , and s uniformly. The handicap value τ for each test is chosen
uniformly at random from the range of differences observed on the data. Then, the
randomized decision is made whether the split should optimize the classification
objective in (11.3) or the regression objective in (11.4). In general, we choose this
with equal probability unless the number of negative patches is small (<5 %), in
which case the node is chosen to minimize the regression objective (11.4).

By interleaving the objective functions, we obtain leaves that both classify
patches belonging to an object and regress the location of the object with low un-
certainty, as depicted in Fig. 11.2.

11.4 Object Detection with Hough Forests

Class-specific Hough forests can be used to localize (detect) the bounding boxes
of the instances of a class in a test image using the Hough transform. Let us first
assume that the size of the object bounding boxes is fixed to W × H during both
training and testing. Under this assumption, the only parameter defining an object
bounding box is the centroid.

Consider a patch (v(p), c(p),y(p)) centered at the position p in the test image.
Here, v(p) is the observed appearance of the patch, c(p) is the hidden class label
(whether p lies inside the object bounding box or not), and y(p) is the hidden offset
vector from the center of the object bounding box to p (meaningful only in the
case c(p) = 1). Furthermore, E(q) denotes the random event corresponding to the
existence of the object centered at the location q in the image.

We are now interested in computing the probabilistic evidence p(E(q) | v(p))

that the appearance v(p) of the patch brings about the availability E(q) at different
positions q in the image. We will distinguish between the two cases: whether p
belongs to the bounding box B(q) centered at q or not. If p /∈ B(q), then we assume
that v(p) is not informative about E(q), putting p(E(q) | v(p)) = p(E(q)). This is,
of course, a simplifying assumption, and such “long-range” context information has
been proven useful for object recognition [369]. In fact, it has even been exploited
for semantic segmentation in random forest-based methods [324, 341] (Chap. 15)
and it can be incorporated in our system in a similar way.

Here, however, we consider the evidence coming from the patches within the
bounding box only and thus focus on the second case when p ∈ B(q). Here, the
existence of an object centered at q inevitably implies c(p) = 1 by our definition of
the class label. As a result, one gets

p
(
E(q) | v(p)

) = p
(
E(q), c(p) = 1 | v(p)

)

= p
(
E(q) | c(p) = 1,v(p)

) · p(
c(p) = 1 | v(p)

)

= p
(
y(p) = p − q | c(p) = 1,v(p)

) · p(
c(p) = 1 | v(p)

)
. (11.5)
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Both factors in (11.5) can be estimated by passing the patch appearance v(p)

through the trees in the class-specific Hough forest of T trees. Let us assume that
for a t th tree the patch appearance ends up in a leaf l. The first factor can then
be approximated using the Parzen-window estimate based on the offset vectors Dl

collected in the leaf at train time, while the second factor can be straightforwardly
estimated as the proportion cl of object patches at train time. For a single tree t , the
probability estimate can be written as

pt

(
E(q) | v(p)

) =
[

1

|Dl |
∑

y∈Dl

1

2πσ 2
exp

(
−‖(p − q) − y‖2

2σ 2

)]
· cl (11.6)

where σ 2I2×2 is the covariance of the Gaussian Parzen window. For the entire for-
est, we then simply average the probabilities (11.6) coming from different trees
[6, 44], getting the forest-based estimate:

p
(
E(q) | v(p)

) = 1

T

T∑

t=1

pt

(
E(q) | v(p)

)
. (11.7)

Equations (11.6) and (11.7) define the probabilistic vote cast by a single patch
about the existence of the objects in nearby locations. To integrate the votes coming
from different patches, we accumulate them in an (admittedly non-probabilistic)
additive way into a 2D Hough image V (q), which for each pixel location q sums up
the votes (11.7) coming from the nearby patches:

V (q) =
∑

p∈B(q)

p
(
E(q) | v(p)

)
. (11.8)

The detection procedure simply computes the Hough image V and returns the set
of its maxima locations and values {q̂,V (q̂)} as the detection hypotheses. The V (q̂)

values serve as the confidence measures for each hypothesis. A more principled
approach to generalized Hough transform that avoids non-probabilistic addition and
non-maxima suppression for Hough forests has been investigated in [16, 17].

The computation of the Hough image using the order of operations as suggested
by Eqs. (11.6)–(11.8) would be inefficient. Instead, the same image (up to a con-
stant multiplicative factor and minor pixel discretization issues) can be computed
by going through each pixel location p, passing the patch appearance v(p) through
every tree in the Hough forest, and adding the value cl|Dl | to all pixels {p−y|y ∈ Dl}.
The Hough image V (q) is then obtained by Gaussian filtering the vote counts accu-
mulated in each pixel. An alternative way to find the maxima of the Hough image
would be to use the mean-shift procedure as it is done in other Hough voting-based
frameworks [208, 210, 277].
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11.4.1 Handling Variable Scales and Aspect Ratios

To handle scale variations, we resize a test image by a set of scale factors
s1, s2, . . . , sS . The Hough images V 1,V 2, . . . , V S are then computed independently
at each scale. After that, the images are stacked in a 3D scale-space frustum, the
Gaussian filtering is performed across the third (scale) dimension, and the maxima
of the resulting function are localized in 3D. The resulting detection hypotheses
have the form (q̂, ŝ, V ŝ(q̂)). The hypothesized bounding box in the original image
is then centered at the point q̂

ŝ
, has the size W

ŝ
× H

ŝ
, and the detection confidence

V ŝ(q̂). Similar ideas can be applied if significant variations of the aspect ratio are
expected as is briefly discussed in Sect. 11.5. Due to the quantization of the scales
and aspect ratios, the accuracy of the hypothesized bounding box is limited. A more
precise estimate of the bounding box can be obtained by projecting the hypothesis
back to the image domain and taking the tightest bounding box encompassing the
image patches that voted for the hypothesis [306].

11.4.2 Leaf Pruning

To speed up the detection, we prune leaves with a low class confidence (cl < 0.5).
In our experiments, we observed that this threshold corresponding to 50 % object
probability did not reduce the detection performance in contrast to higher threshold
values. Since the object bounding boxes also contain background patches as shown
in Fig. 11.2, most of the pruned leaves actually model the background of object
bounding boxes.

11.5 Experiments

We evaluated the Hough forests on several challenging datasets (Fig. 11.3), where
we provide a performance comparison with the related detection methods as well as
with the best (as far as we know) results published prior to our initial work [118].
The performance curves were generated by changing the acceptance threshold on
the hypotheses vote strength V (q̂). We adhered to the experimental protocols and
detection correctness criteria established for each of the datasets in previous work.
When generating recall-precision curves, we rejected the detection hypotheses with
centroids inside the bounding boxes detected with higher confidence in order to
avoid multiple detections of the same instance.

The training settings were as follows. During training, the positive examples
were rescaled to the same height, chosen so that the larger bounding box dimension
(width or height) was equal to 100 pixels on average over a dataset. 20,000 random
binary tests were considered for each node. Each tree was trained on 25,000 positive
and 25,000 negative patches.
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Fig. 11.3 The results of our
detector at equal
recall-precision rates on
challenging images from
TUD pedestrian,
UIUC-Scale, and Weizmann
Horse datasets (green =
correct, red = false positive,
cyan = missed detection)

To bias our training to work better on hard examples, we used the following
heuristic procedure, which can be regarded as a compromise between boosting and
bagging of trees, and allowed us to achieve good accuracy with few (T = 15) trees.
For the first five trees, the training patches were sampled with uniform probabilities
from all available positive and negative examples. Then the constructed random
forest was applied to the training data and the positive and negative instances that
were harder to classify were acquired. These were used to construct the next five
trees added to the previous 5. We applied this procedure once more, ending up with
the forest having 15 trees.

For detection, we used a Parzen window with σ 2 = 9. In a multi-scale setting,
the additional third dimension was filtered with σ 2 = 1. Typically, 4–5 scales with
equal spacing were used to handle the variety of scales in the test data.

11.5.1 UIUC Cars

The UIUC car dataset [1] contains images of side views of cars. The test data are
split into the set of 170 images with 210 cars of approximately same scale (UIUC-
Single) and the set of 108 images containing 139 cars at multiple scales (UIUC-
Multi). The sets include partially occluded cars, cars with low contrast, images with
multiple car instances, cluttered backgrounds, and challenging illumination. The
shape of the objects remains, however, mostly rigid, which makes the detection task
easier.

On the available 550 positive and 450 negative training images, we trained a
class-specific Hough forest. For patch appearance, three channels were used (inten-
sity, absolute value of x- and y-derivatives). Applying this forest for the detection
achieved an impressive 98.5 % EER for UIUC-Single and 98.6 % for UIUC-Multi,
thus exactly matching the state-of-the-art performance reported recently in [200]
(Table 11.1).
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Table 11.1 Performance of
different methods on the two
UIUC car datasets at
recall-precision equal error
rate (EER). Hough Forest
outperforms the previous
Hough-based and random
forest-based methods and
achieves state-of-the-art
results

Methods UIUC-Single UIUC-Multi

Hough-based methods

Implicit Shape Model [210] 91 % –

ISM + verification [210] 97.5 % 95 %

Boundary Shape Model [277] 85 % –

Random forest-based method

LayoutCRF [403] 93 % –

State-of-the-art

Mutch and Lowe CVPR’06 [261] 99.9 % 90.6 %

Lampert et al. CVPR’08 [200] 98.5 % 98.6 %

Our approach

Hough Forest 98.5 % 98.6 %

HF-Weaker supervision 94.4 % –

Importantly, the Hough forest outperformed considerably the Hough-based im-
plicit shape model [210] (even with its additional MDL verification step) and
boundary-shape model [277] approaches, as well as the random forest-based Lay-
outCRF method [403]. It has to be mentioned, at the same time, that these related
methods used smaller subsets of the provided training data. In the case of the ISM
and the LayoutCRF, this is due to the necessity of obtaining pixel-accurate annota-
tions. Additionally, in the case of ISM and the Boundary-Shape Model [277] this
might be due to the computational burden of constructing and processing generative
codebooks. As Hough Forests are not limited by these factors, we used the provided
training data completely, possibly accounting for some part of the improvement.

Another distinguishing factor is that our method samples patches densely, while
ISM methods instead consider sparse interest points, which is likely to give our
method a significant advantage [267]. We therefore investigated the performance of
our method on the single scale dataset as the density of patch sampling is decreased.
The graceful degradation of the performance in Fig. 11.4, as the number of patches
is decreased down to 1/256 of the original, suggests that the relative accuracy of the
Hough forest detection is not only due to a very large number of patch votes, but
also has to do with the discriminative training of the codebook.

11.5.2 TUD Pedestrians, INRIA Pedestrians, Weizmann Horses

To assess the performance of our method for more challenging, articulated classes
we evaluated it on two pedestrian datasets: a recent one from TU Darmstadt in-
troduced in [7] containing mostly side views, and a more established dataset from
INRIA [83] containing mostly front and back views. Both datasets contain partial
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Fig. 11.4 As the sampling
density is decreased, the
recall-precision equal error
rate (EER) of our method on
UIUC-Single degrades
gracefully

occlusions and variations in scales, poses, clothing styles, illumination, and weather
conditions.

For the TUD dataset 400 training images with pedestrians are provided and, as
the diversities of the backgrounds were low, we augment it with training background
images from the INRIA dataset. Otherwise, we followed the experimental protocol
of [7] and tested it on 250 images with 311 pedestrians in it. For the INRIA dataset,
we used the provided training data of 614 images with pedestrians and 1218 back-
ground images. According to [83], we applied our method as a classifier on 288
cropped, pre-scaled images with pedestrians and 453 images without them.

We have also considered the Weizmann Horses dataset [35] containing the near-
side views of horses in natural environments under varying scale and strongly vary-
ing poses. We used the training-test split (100 horse images and 100 background
image for training, 228 horse images and 228 background images for testing) as
suggested in [340].

For all three datasets we used the same color channels. We have considered the
following 16 feature channels: three color channels of the Lab color space, the ab-
solute values of the first-order derivatives ∂

∂x
, ∂

∂y
, the absolute values of the two

second-order derivatives ∂2

∂x2 , ∂2

∂y2 , and the nine HOG-like [83] channels. Each HOG-
like channel was obtained as the soft bin count of gradient orientations in a 5-by-5
neighborhood around a pixel. To increase the invariance under noise and articula-
tions of individual parts, we further processed the above-introduced 16 channels by
applying min and max filters with 5-by-5 filter size, yielding C = 32 feature chan-
nels (16 for the min filter and 16 for the max filter).

The performance of different methods including ours is shown in Fig. 11.5. For
TUD pedestrians our method (recall-precision EER = 86.5 %, AUC = 0.87, recall at
90 % precision = 85 %) performed on a par with the state-of-the-art method [7] and
significantly better than the implicit shape model-based method [327] (reproduced
from [7]). Furthermore, it should be noticed that both competitors require additional
annotation for training (the ISM-based approach, however, was again trained on a
smaller training set).

For an image from the TUD dataset, our system requires 6 seconds where each
of the four operations, namely feature extraction, passing patches through the trees,
casting the votes, and processing the Hough images, takes around a quarter of the
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Fig. 11.5 Hough forests (red and orange curves) demonstrate a competitive performance with
respect to the previous state-of-the-art methods (blue curves) on several challenging datasets. See
text for a more detailed discussion

computation time. These timings are for a 720 × 576 pixel resolution with four
scales (0.3, 0.4, 0.5, 0.6) and running on a modern CPU.

For the INRIA dataset, the Hough forest performance (recall = 93 % at FFPW =
10−4) was not as good as that of the state-of-the-art method [281]. Yet it is still
quite competitive and, in particular, performs better than the SVM-based detection
for similar features (HOG) [83]. It may be also argued that the non-standard testing
protocol for this dataset favors sliding-window approaches to some extent. We also
used the dataset to measure the impact of the min and max filtration of the original
channels, where we got a decrease of around 10 % recall at 10−4 FPPW when
working with the 16 unfiltered channels. This suggests that the min and max filtering
is needed to make the response of pixel-based comparison tests (11.2) more stable,
at least when working with such deformable classes as pedestrians.

Finally, for the Weizmann Horse dataset the performance of the Hough forest
was clearly better than the previous state-of-the-art [339]. Nevertheless, we have
tried two more improvements addressing the two challenges of this dataset. Firstly,
the position of bounding box centroids are not stable with respect to the horse bod-
ies, which leads to a certain smearing of votes. To address this, we ran our detector
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on the positive training images and recentered the bounding boxes to the peaks of
the response. After that the forest was retrained. Secondly, the aspect ratios of the
boxes varied considerably due to the articulations and variations in the viewpoint.
To address this, we performed voting in 4D Hough space, where the fourth dimen-
sion corresponded to the aspect ratio multiplier (the number of patch-against-tree
matching operations was not increased though, as the votes were reused between
different ratios). As can be seen from Fig. 11.5(c), both improvements increased the
performance considerably (recall-precision EER went from 91 % to 93.9 %, AUC
from 0.96 to 0.98, recall at 90 % precision from 91.5 % to 95.1 %) obtaining a
substantial margin over the previous state-of-the-art.

11.5.3 Does Offset Supervision Matter?

Quite a few previous approaches have used random forests as discriminative code-
books [214, 235, 253, 324, 341]. Hough forests differ from them as they store the
patch offsets at leaves and use them at runtime to perform voting. Furthermore, the
offset information is used as supervision during training of Hough forests since half
of the binary tests are chosen to minimize the offset uncertainty (11.4). We therefore
addressed the question whether such additional supervision matters. Thus, for the
datasets UIUC-Single and TUD, we built forests where all binary splits were cho-
sen to minimize the class uncertainty (11.3) (a similar criterion drove forest con-
structions in the above-mentioned work). The leaf information and the detection
procedure remained as before.

The performance of the new forests is shown in Table 11.1 and Fig. 11.5(a), in
the entries denoted ‘HF-weaker supervision’. A considerable drop in performance
compared to fully supervised Hough forests is observed, suggesting that indeed off-
set vector supervision is a valuable addition.

11.6 Discussion

We have introduced the Hough forests approach for object detection. Hough forests
build discriminative class-specific part appearance codebooks based on decision
forests that are able to cast probabilistic votes within the Hough transform frame-
work. Such forests can be efficiently used to detect instances of classes in natural
images, with the accuracy that is not only superior to previous methods using related
techniques but also improves the state-of-the-art for several datasets. Apart from the
accuracy, the use of random forests potentially allows a very time-efficient imple-
mentation. While our current unoptimized CPU version takes several seconds per
image, the speed-up factors reported for the GPU implementation of random forests
in [333] suggest that near real-time performance is attainable.



Chapter 12
Hough-Based Tracking of Deformable Objects

M. Godec, P.M. Roth, and H. Bischof

Online learning has shown to be successful in tracking-by-detection of previously
unknown objects. However, most approaches are limited to a bounding box repre-
sentation with fixed aspect ratio and cannot handle highly non-rigid and articulated
objects. Moreover, they provide only a limited foreground/background separation,
which in turn, increases the amount of noise introduced during online self-training.
To overcome this limitation, we present a tracking-by-detection approach based on
the generalized Hough transform. We extend the idea of Hough forests (Chap. 11) to
the online domain, and couple the voting-based detection and back-projection with a
rough GrabCut segmentation [315]. This significantly reduces the amount of noisy
training samples during online learning and thus effectively prevents the tracker
from drifting. To show these benefits, we demonstrate our method for tracking a
variety of previously unknown objects, even under heavy non-rigid transformations,
partial occlusions, scale changes and rotations. Moreover, we compare our tracker to
state-of-the-art methods including both bounding box-based and part-based track-
ers.

12.1 Introduction

Visual object tracking is a major component of a wide range of computer vision
applications such as surveillance, driving assistant systems, interactive games, or
augmented reality. If the task is well defined and the object-of-interest is known in
advance, prior knowledge can be used to learn an efficient model. However, there
are numerous applications such as collision avoidance, video re-targeting, or image
stabilization, where no information is available beforehand.

A popular way to address this lack of knowledge has been to apply online learn-
ing to train a discriminative object detector during tracking and to adapt the detector
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to changes of the object over time (e.g. [10, 12, 139]). These approaches formu-
late tracking as alternation between object detection and online learning, where the
current prediction is used to update the classifier. In this setting, a detector for an ar-
bitrary object—not restricted to specific classes or categories—can be trained from
scratch, only requiring the initial bounding box containing the object-of-interest. In
this way, a discriminative object model is estimated which can be adapted online
over time via self-learning, i.e. the model generates the update on its own.

Thus, we have to distinguish between allowed transformations (e.g. non-rigid de-
formations, rotations, appearance changes) and invalid ones (e.g. occlusions, drift-
ing). This problem is well-known as the template update problem [242] or the
stability–plasticity dilemma [145] and has been addressed by using, e.g., more ro-
bust learning algorithms [317], different learning paradigms [12, 140], multiple clas-
sifiers [182, 318], or coupling a conservative learning framework to a very adaptive
tracking approach [178].

However, most of these approaches are limited to a bounding box representation
of the object. Therefore, they have to cope with a rather inaccurate object description
(e.g. parts of the bounding box may consist of background). To avoid this problem,
non-rigid or articulated objects can be represented by a part-based representation
such as the Deformable Parts Model [105] or models obtained via the generalized
Hough transform [117, 228, 275]. However, such approaches need a large amount
of labeled training data. This is not a problem for detection/tracking tasks where
the object classes are known in advance (e.g. pedestrians [119]), but makes them
infeasible for tracking unknown objects.

In this chapter, we address two major limitations of previous approaches in the
tracking-by-detection domain. First, we get rid of holistic bounding box description
by using a parts-based model. In particular, we transfer the Hough-based classifi-
cation idea to the online domain by introducing totally randomized Hough ferns
using simple pixel comparisons on different feature channels as splitting tests (cf.
Chap. 9 and Chap. 10). This allows us to robustly detect deformable objects. Sec-
ond, we use back-projections to locate the support of our detection, which gives
a fine-grained detection of object parts that have a valid geometric relation. This
support guides a segmentation process (using GrabCut [315] in our case), which
roughly separates the object from the background pixel-wise. Having such a seg-
mentation has two advantages. First, since tracking-by-detection approaches di-
rectly use this annotation to update themselves, the amount of noise (i.e. pixels
that do not belong to the object) introduced to the learning process can be reduced.
Second, this allows for tracking objects with changing aspect ratio, scale, and ori-
entation.

Thus, as illustrated in Fig. 12.1, the intended tracking scenario is to start from
a bounding box initialization and then to continuously train a Hough-based de-
tector with the current object appearance and to guide the segmentation process.
The approach, denoted HoughTrack (HT), allows robust tracking of unknown
objects under non-rigid transformations, appearance changes and partial occlu-
sions.
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Fig. 12.1 Tracking deformable objects: (a) manual bounding box initialization (green) in the first
frame; and (b–d) continuous tracking and segmentation of the object (red). The images are cropped
for better visibility

12.2 Related Work

Javed et al. [171] and Avidan [10] have been the first to use online learning for object
detection and tracking. While Javed et al. [171] use online AdaBoost and holistic
(PCA-based) features, Avidan [10] already performs pixel-wise classification and
uses Mean-Shift to find the current object position. Additionally, to overcome the
bounding box limitation, he incorporates a rejection scheme for pixels that are too
hard to classify. From that time, there has been a reasonable interest in online learn-
ing within the visual tracking domain. Grabner et al. [139] defined tracking as an un-
supervised online learning problem and transferred Boosting for Feature Selection
[388] to the online domain. They apply a patch-based detector based on Haar-like
features which is trained from frame-to-frame via online AdaBoost.

To overcome drifting, Grabner et al. later extended this approach to the semi-
supervised learning (SSL) domain [140]. Thus, only the training samples given in
the very first frame are considered as correctly labeled, while all samples generated
by the classifier during runtime are considered as unlabeled. Similarly, Babenko et
al. [12] define tracking as a multiple-instance learning (MIL) problem, where the
current tracking position is considered uncertain and several positive samples are
selected close to the current object position. Both concepts, SSL and MIL, shift
the problem of sample selection from the tracking application towards the learning
algorithm.

In contrast, Saffari et al. [317] transform the more robust random forests algo-
rithm to the online learning domain and apply it to tracking. They use a tree-growing
scheme to establish the ensemble of decision trees during runtime. Learning a sta-
ble object detector during tracking is the main goal of the approach of Kalal et
al. [178]. They combine an adaptive Lukas–Kanade tracker and several restrictive
learning constraints to establish an incremental tree-like classifier while avoiding
drifting over time. This results in quite a robust object detector.

To avoid the limitations of bounding box trackers, Nejhum et al. [264] propose a
tracker for articulated objects. They use blocks of appearance histograms and shape
descriptions and assume stationary foreground appearance. Additionally, they use a
rough segmentation to find the object’s outline and re-arrange the blocks to maxi-
mize the overlap and similarity to the current object appearance and shape. Kwon
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and Lee [197] define a fixed number of object parts that are automatically renewed
during tracking and track the geometric relations of these parts over time. Addi-
tionally, to reduce the computational complexity, they apply Basin Hopping Monte
Carlo sampling. Bibby and Reid [27] describe the tracking problem within a proba-
bilistic framework. Using pixel-wise posteriors they model the foreground and back-
ground appearance and the object contour jointly. Since such a theoretic framework
is complex and computationally infeasible, they separate the tracking of deformable
objects into registration, level-set segmentation, and online appearance learning for
continuous refinement of both the object and the background model.

Another branch of research is the development of segmentation-based trackers.
Such methods, however, either need prior knowledge (e.g. [75]), use only very sim-
ple object appearance models (e.g. color histograms [27, 307]), require an offline
processing of the sequence (e.g. [146, 373]), or are computationally too complex
for real-time applications (e.g. [255, 412]). Fan et al. [101] proposed a tracking
approach, where salient points within and outside the object region are tracked and
used to generate so called scribbles (i.e. foreground/background markings with high
probability). Subsequently, these scribbles are used for image matting, which results
in a high-quality object segmentation. Cehovin et al. [59] proposed a coupled-layer
visual model for tracking deformable objects. They combine a local layer for track-
ing single patches and their geometric relations and a global layer describing holistic
object properties.

In the domain of generic object detection, part-based representations have be-
come very popular, since they provide excellent generalization while handling
intra-class variations very well. One prominent approach is the deformable parts
model [105], which allows to reliably detect objects even under heavy non-rigid
transformations and partial occlusions. Using a latent support vector machine
(SVM), a discriminative part-based object detector is trained which can handle a
small number of parts selected automatically during the training phase. However,
due to its complexity the approach is infeasible for real-time applications and has
not, so far, been adapted for use in an online framework.

An alternative approach is the Generalized Hough Transform [15, 209], which
was successfully applied to object detection [117, 228, 275], action recognition
[409] and tracking [119]. In addition to the object’s localization (see Chap. 11),
the Hough-based classification framework also provides the support of a detectors
decision (i.e. the local image positions that voted for the possible object center).
This has in particular been addressed by Razavi et al. [306] and is also of high inter-
est for our approach. However, in the case of tracking, only objects from a known
class can be recognized using a pre-trained classifier. During tracking, only spe-
cific instances are distinguished from each other by an additional probability that is
estimated online.

12.3 Online Hough Ferns

In the following, we first give a short review on decision forests [44], random
ferns [280], and their application to Hough-voting-based classification. Subse-
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quently, we introduce a new incremental leaf node statistics that allows for online
adaptation, and define the sample generation process used for updating the classifier
during tracking.

Let v be a rectangular image patch of size n × n and (assuming a binary classifi-
cation) C = {1,0} be the label space describing the object and the background class,
respectively. In decision forests, each tree node j splits the training samples Sj into
two subsets according to the splitting function

h(v, θ j ) ∈ {0,1}, (12.1)

where the triple θ = (φ,ψ, τ ) defines the parameters of the splitting function.
The resulting subsets of training samples are passed to the left and to the right

child node, respectively, and splitting is performed recursively until the subsets are
internally consistent (i.e. belonging to the same class c) or a maximum tree depth D

has been reached. The internal consistency of the resulting training sample subsets
is measured using, e.g. the Gini-Index or entropy and the binary tests h(v, θ) are
selected to optimize the information gain. Since optimizing over the entire feature
space is infeasible, the feature dimensions are sub-sampled randomly. Geurts et al.
[128] proposed to additionally reduce the number of thresholds used per feature
dimension and to randomly sample these thresholds from the feature range (see
Chap. 10). In our concrete implementation, the splitting functions are defined as

h(v, θ) = [
φ(v) · ψ > τ

]
, (12.2)

where φ(v) randomly selects two individual entries from v, ψ = (1 −1)�, and τ is
a random threshold. These tests calculate the difference of two feature values in v
and compare them to a threshold τ .

During evaluation, a sample v is sent down the tree according to the result of the
node tests until it reaches a leaf node l. Within each leaf node, the object probability
p(c = 1|l) is stored. Finally, the overall probability p(c|v) of the whole ensemble
is determined by averaging the individual leaf probabilities p(c = 1|l) of each tree.
The actual class prediction of a sample v is computed as

c(v) = arg max
c

T∑

t=1

pt (c|v). (12.3)

Because of the tree-like classifier structure, the training can be done recursively and
the evaluation is very fast due to the logarithmic dependency of the complexity of
the classifier with respect to the number of nodes.

Showing several benefits, random forests also have a few limitations in the con-
text of object tracking. First, a substantial training set is required to establish the
classifier structure. Especially when tracking unknown objects, the amount of avail-
able training data is very limited. Second, streaming data sources and incremental
learning are not supported. Even though online random forests [317] and online
Hough forests [325] have been proposed, both use a tree-growing scheme to estab-
lish the classifier’s structure during runtime, but the node tests are still optimized to
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fit the object’s appearance at training time and cannot be adjusted afterwards. Third,
the node tests are sequentially/hierarchically dependent on each other which intro-
duces conditional jumps into the execution pipeline. For these reasons, we decided
to completely randomize all test parameters θ referred to as totally randomized trees
[235] and use random ferns, which results in completely independent tests.

12.3.1 Random Ferns

Random ferns [280] are ensemble classifiers which are highly related to random
forests. However, instead of tree-like structures random ferns use flat node test struc-
tures making the tests independent from each other, which allows to evaluate them
in parallel. For more details, see Chap. 9.

In contrast to random forests, ferns are usually used with completely randomized
tests [280, 387], which are not optimized using training data. In particular, for track-
ing of unknown objects, node optimization is not necessary for two reasons. First,
since only the very first frame is labeled, there is only a limited amount of data
available to optimize the fern structure. Second, using only the appearance from the
very first frame for optimizing may result in very tailored node tests, so that these
tests may not be able to cover the changing appearance of the object over time.

12.3.2 Hough Voting

While the leaf nodes of random forests and ferns only store the probability p(c|l)
of a sample v ending up in node l being of class c, a Hough forest additionally
stores displacement vectors d ∈ R

2 that point toward the expected object center.
Thus, a positive (i.e. c = 1) training sample for a Hough forest consists of the triplet
(v, c,d), where d is the displacement vector to the object’s center position in the
training data. Negative training samples (i.e. c = 0) do not contain a displacement
vector since there is no relation towards the object center. The distribution of these
vectors within each leaf node is modeled by a sum of Dirac measures according to
the set of displacement vectors Dl from all samples (v,1,d) that ended up in leaf
node l. While training a tree node of a Hough forest, either the class consistency or
the uncertainty of the displacement vectors for the given training set is optimized,
as proposed in [117]. See Chap. 11 for more details.

During evaluation, a voting map is generated by accumulating the displacement
vectors Dl , weighted by the foreground probability p(c = 1|l) of the corresponding
leaf node l. This is done for all possible locations in the image.

12.3.3 Incremental Leaf Node Statistics

To establish a Hough-based classifier, we have to model (a) the foreground prob-
ability p(c = 1|l) of the leaf node and (b) the corresponding displacement vectors
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Fig. 12.2 Displacement map Ml : (a) training / input vectors; (b) weighted displacement cells; and
(c) weighted output vectors for κ = 3

Dl during online training. The foreground probability is modeled incrementally by
counting positive and negative samples arriving at leaf node l during runtime. To
simulate an equal amount of positive and negative data, we additionally count the
amount of positive and negative samples per fern.

Since the splitting tests used are not optimized to cluster similar voting direc-
tions, the set of displacement vectors Dl may be diverse. Therefore, we discretize
the voting space into small rectangular displacement cells. We further weight each
cell according to the number of samples that share the corresponding displacement
vectors. This can be done incrementally. When the classifier is applied at a certain
image position, we retrieve the corresponding leaf node l and collect a subset of
displacement vectors from the displacement map Ml with respect to the weight of
the cells. This is done by picking κ displacement cells with the largest weights ωcell,
setting their vote strength to

ωvote = p(c = 1|l) · ωcell (12.4)

and returning a displacement vector to the center of the cell (see Fig. 12.2).

12.3.4 Online Adaptation

Using only incremental statistics within the leaf nodes would limit the adaptivity
of the classifier due to saturation effects. Therefore, we apply an infinite impulse
response-like forgetting function

ωl(c = 1) =
q0∑

q=−∞

∣∣Sq
l (c = 1)

∣∣ · f q0−q, (12.5)

where ωl(c = 1) is the current weight of the positive class in leaf node l and |Sq
l (c =

1)| is the number of positive samples in leaf node l at time q , respectively. q0 denotes
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the current time and f ∈ (0,1] is the forgetting factor. The same function is applied
to weight the negative class ωl(c = 0) and all individual cells of the displacement
map Ml , respectively. Thus, we determine the current foreground probability of a
leaf node l as

p(c = 1|l) = ωl(c = 1)
∑

i∈Ck
ωl(c = i)

. (12.6)

The described adaptations allow for online training of Hough forests using the
current frame and for detection of the object in subsequent frames. Therefore, we
apply the random fern classifier in a sliding window scheme and accumulate the
retrieved displacement vectors. To suppress noise and effects from the displacement
vector discretization, we perform Gaussian smoothing. The value of the voting map
on a specific position corresponds to the probability of an object being centered
there.

12.3.5 Support

Besides the detection capabilities, the voting mechanism of Hough ferns can also
be applied in the reverse direction to localize the support S of a specific center
position. Given an image position p, the support S(p, r) is defined as the sample set
containing all image positions (i.e. samples v) that have voted to the center position
p with maximum Euclidean distance r . Using the corresponding set of displacement
vectors Dl of samples v, the voting origins can be back-projected onto the image
space. Thus, we obtain a sparse point-set of positions belonging to the object that
voted for the position p (i.e. the maximum of the voting map).

12.4 Closing the Tracking Loop

Additionally to online learning, the second crucial part is to close the tracking loop
by online training sample selection. Selecting the right update strategy is important
for online tracking-by-detection and heavily influences the overall performance. The
major problem is that the correctness of the tracking result is not guaranteed (due to
misalignments, occlusions or cluttered background) but the learning algorithm has
to generate training samples including as little noise as possible itself.

Therefore, we propose to roughly segment the object, using the support S(p, r)

of the detected object with center p as an initialization. This segmentation is sub-
sequently used to accurately update the classifier, which allows learning of highly
non-rigid object deformations during tracking. Figure 12.3 illustrates the application
flow of our tracking system.

Using the support S(p, r) of the detected object position (i.e. the parts that share
a stable geometric relation to the object center p), we guide a segmentation process
that extracts the object. Even if this segmentation is not very precise, compared to a
bounding box approach this lowers the amount of noise introduced to the online up-
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Fig. 12.3 The tracking loop: (a) current image; (b) Hough-based object detection; (c) back-projec-
tion and supporting image positions; (d) guided segmentation; (e) robust updating; and (f) tracking
result. (Red: foreground support, segmentation and updates; blue: background segmentation and
updates)

date steps. To establish the segmentation, we apply the well-known GrabCut [315]
algorithm.1 We use the support of the maximum of the likelihood map as fore-
ground and a maximum-object-sized rectangle as background to initialize the tri-
map, consisting of foreground, background, and unknown pixels. The segmentation
labels the pixels marked as unknown and returns a binary separation of the image.
Since the segmentation is not expected to be precise (due to, e.g. , missing parts or
over-segmentations), we omit a region in-between the foreground and background
segment during training.

To enforce adaptivity to geometric reconfiguration of the object, we shift the ob-
ject’s center position (i.e. the basis to calculate the displacement vectors d of the
training samples) to the current center-of-mass of the foreground segment. Thereby,
the detected object center represents only the center of the currently visible part
of the tracked object, because there is no discrimination between occlusions and
geometric reconfiguration of the object. However, this simple but efficient strategy
delivers accurate training data which are used to update the classifier during track-
ing. If the segmentation fails (i.e. reporting the maximum-object-sized rectangle),

1Implementation from http://opencv.willowgarage.com.
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the tracker acts like a traditional bounding box-based tracker. However, randomized
ensemble methods such as random ferns are known to be more robust to a large
number of incorrectly labeled samples.

12.5 Experimental Evaluation

To demonstrate the performance of our tracking approach, denoted as HoughTrack
(HT), we run two different experiments. First, we give a comparison to two state-
of-the-art trackers on a dataset widely used for evaluation of bounding box-based
approaches, where we show competitive results. Second, we compare our approach
to a recent part-based tracking approach. For this comparison, we collected a set of
very diverse and challenging sequences including highly non-rigid object transfor-
mations. We additionally include the sequences used for evaluation of the compared
approach. Moreover, to justify the additional effort of segmentation, we give a com-
parison of the approach with and without the segmentation step.

The settings of our tracker are fixed for all sequences: the classifier pool consists
of 20 ferns and T = 10 ferns with the highest population are selected for detection.
The used ferns have a group size of S = 8, with M = 1 groups (see Chap. 9). We use
Lab-color space (3 channels), first and second derivatives in the x and y directions
(4 channels) and a 9-bin histogram of gradients (9 channels) to form the feature
vector v. Please note that the group size S corresponds to the tree depth D and that
we use single-group ferns (M = 1) as we embed them into an ensemble of size T .
The used patch size of the training samples v is 12 × 12 and κ = 10 strong votes are
returned per leaf node l. The forgetting constant f is set to 0.9 and the maximum
support deviation r is 0.5 pixels.

12.5.1 Bounding Box Dataset

For quantitative analysis, we use the publicly available tracking dataset by Babenko
et al. [12], consisting of eight sequences collected from several different publica-
tions and having an overall size of more than 5000 frames. For comparison, the orig-
inal results of MILTrack (MIL) [12] using 50 weak classifiers and Online Random
Forests (ORF) [317] using 50 trees are denoted. Both trackers deliver state-of-the-
art performance on this dataset. To deliver similar results as the compared trackers,
the results of HoughTrack (HT) are transformed to bounding boxes of original size,
centered at the center-of-mass of the segmentation. Table 12.1 clearly shows that
the proposed approach delivers competitive results, even not considering partial or
full occlusions in the evaluation due to the lack of annotations.

Based on the ground truth annotation included in the dataset of [12], which is
represented by a simple bounding box of the same size as the initialization, we can-
not fairly compare our approach to other bound-box-based trackers because object
occlusions are completely ignored in the ground truth annotation. To alleviate the
influence of occlusions to the overall performance, we measure the tracking accu-
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Table 12.1 Results on
Babenko sequences.
Percentage of correctly
tracked frames for individual
sequences, and average across
sequences

Sequence HT MIL [12] ORF [317]

David 100 84 95

Sylvester 99 93 71

Girl 86 85 99

Face Occlusion 1 100 91 100

Face Occlusion 2 100 94 70

Coke 24 46 17

Tiger 1 45 78 27

Tiger 2 71 78 21

Average 78 81 63

racy using the Agarwal criterion [1], which is defined as score = RT∩RGT
RT

, where RT
is the tracking rectangle and RGT the ground truth. We report the number of suc-
cessfully tracked frames (score > 0.5). In Fig. 12.4, we show some selected frames
from the dataset and demonstrate that the raw accuracy values from Table 12.1 fail
to demonstrate the true performance of the proposed tracking approach.

12.5.2 Tracking Deformable Objects

Since the intended purpose of our approach is tracking deformable objects, we ad-
ditionally demonstrate the performance on several challenging sequences showing
different ranges of complexity and non-rigid deformations. Therefore, we collected
a set of seven videos consisting of about 2500 frames. We compare to Basin Hop-
ping Monte Carlo Tracking (BHMC) [197]. This tracker is also designed to track
deformable objects in a part-based manner. We also include the sequences provided
by the authors of [197] to give a fair comparison (see Table 12.2). Although track-
ing non-rigid objects, BHMC does not report a segmentation of the object but a
bounding box.

Table 12.2 depicts the tracking results of the selected approaches evaluated on the
test sequences. The percentage of frames for each sequence until the tracking ap-
proach fails has been determined by visual inspection because the kind of output of
the compared approaches is very different. As a bounding box baseline, we also state
the results of Online Random Forests (ORF) [317], but this tracker cannot cope well
with the amount of transformation presented in this videos, and the estimated ob-
ject position is less accurate than using the two other approaches. Figure 12.5 shows
some selected frames of the sequences and the tracking results of HoughTrack (HT).

12.5.3 Bounding Box vs. Segmentation-Based Tracking

The major remaining question of the presented approach is whether the effort of an
additional segmentation is justified. Therefore, we performed a simple experiment



170 M. Godec et al.

Fig. 12.4 Illustrative tracking results. Selected frames from the Babenko sequences [12]

comparing HoughTrack with and without the subsequent segmentation step. Thus,
the only difference between the compared methods is the set of update patches that
is used to update the classifier.

We use a subset of the sequences from Sects. 12.5.1 and 12.5.2, which have dif-
ferent grades of deformation and occlusion. For simplicity, we use the same criteria
to measure the tracking quality per dataset as stated above. The first block of Ta-
ble 12.3 shows the comparison for standard sequences taken from the Babenko [12]
dataset. The target objects in this sequences are only slightly deformed, which does
not affect the bounding box version of our approach too much. However, signif-
icant occlusions decrease the tracking performance and the tracker starts to drift
because the occluding object is not removed from the update region as it is the case
if segmentation is performed. Also out-of-plane rotations of the appearance of the
tracked object decrease the performance because the proposed shift to the center of
the segmentation helps to stick to the original object if the appearance differs from
the background.

Comparing both versions on more challenging sequences including highly non-
rigid transformations of the target object reveals the positive influence of the seg-
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Fig. 12.5 Illustrative tracking results. Manual initialization (first row) and selected frames (row 2
to 6) from several sequences. (Green: initialization rectangle; red: tracking result)
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Table 12.2 Tracking
deformable objects.
Percentage of frames
correctly tracked until failure

Sequence HT BHMC [197] ORF [317]

Cliff-dive 1 100 100 100

Motocross 1 100 5 15

Skiing 100 0 5

Mountain-bike 100 50 100

Cliff-dive 2 100 30 50

Volleyball 100 60 45

Motocross 2 100 25 10

Transformer 100 100 100

Diving 75 100 30

High Jump 100 100 5

Gymnastics 100 100 65

Average 92 55 36

Table 12.3 Bounding box vs.
segmentation-based tracking.
Percentage of correctly
tracked frames for selected
sequences and average

Sequence with Seg. without Seg.

Sylvester 99 90

Girl 86 84

Face Occlusion 2 100 91

Coke 24 10

Motocross 1 100 5

Volleyball 100 42

Transformer 100 30

High Jump 100 14

Average 89 46

mentation. This effect can be recognized in the second block of Table 12.3, where
rotations, non-rigid transformations and fast motion are present in the sequences.
Overall, the results obtained using segmentation are far better than those without
segmentation, which experimentally justifies the additional effort of back-projection
and segmentation of the target object in our approach.

12.5.4 Discussion and Implementation Details

Since we use a rectangular initialization of our tracker in the first frame, the support
of our detection in the subsequent frames may also include background positions.
Since they have also been included in the initial training set, they may confuse the
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classifier. However, these votes disappear as soon as the object moves and the as-
sociated votes do not match the support criterion any more. Only if the majority of
the support originates from the near background of the object, the recognized object
center will be supported by the background and the tracker is not able to follow the
object any longer. This effect may occur when there is very cluttered background
(Diving sequence) or the segmentation algorithm fails due to similar colors in the
background (Gymnastics sequence).

We have defined a maximum object size that is used for background initialization
of our segmentation algorithm. If the segmentation fails, it is not allowed to grow
beyond this maximum scale. This prevents some leakage of the object segmentation.
In Cliff-dive 2 sequence (3rd column in Fig. 12.5), this effect is clearly visible.
However, the segmentation improves over time and the effect disappears if the set
of supporting pixels is large enough.

To overcome changing aspect ratios of the object, we reshape the maximum ob-
ject size to a square box, which can be switched off if there is prior knowledge on the
stability of the aspect ratio. These last bounding box limitations could be avoided
easily by using a narrow-band segmentation scheme, which would also prevent ex-
tremely fast changes of the shape of the segmentation and make the visual result
even more appealing. For comparison to future approaches, our reference imple-
mentation and the used sequences are available online.2

12.6 Conclusion

In this chapter, we have presented an object tracking approach which is able to han-
dle non-rigid object transformations as well as partial- and self-occlusions. By com-
bining a Hough-voting-based classification framework, online learning techniques
and a segmentation algorithm, we are able to track various objects in several chal-
lenging sequences. We use the classification framework for both detection of objects
and identification of the support of the currently estimated object position. The seg-
mentation is guided by the support and gives a per-pixel separation for object and
background, which enables a more robust online training during runtime.

In future work, we plan to investigate the robustness of our learner and the appro-
priate integration of prior information (e.g. a pedestrian model). To further enhance
the tracking, the incorporation of a motion model and a more advanced occlusion
handling that also supports re-detection of the object would be beneficial. To fur-
ther speed up the approach, we can easily parallelize all modules. This, in particular
allows the usage of a General Purpose Graphics Processing Unit (GP-GPU). That
would also allow the application of more complex segmentation algorithms, which
could further improve the overall performance of our approach.
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Chapter 13
Efficient Human Pose Estimation from Single
Depth Images

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio,
R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake

We describe two new approaches to human pose estimation. Both can quickly and
accurately predict the 3D positions of body joints from a single depth image, with-
out using any temporal information. The key to both approaches is the use of a
large, realistic, and highly varied synthetic set of training images. This allows us
to learn models that are largely invariant to factors such as pose, body shape, and
field-of-view cropping. Our first approach employs an intermediate body parts rep-
resentation, designed so that an accurate per-pixel classification of the parts will
localize the joints of the body. The second approach instead directly regresses the
positions of body joints. By using simple depth pixel comparison features, and par-
allelizable decision forests, both approaches can run super-realtime on consumer
hardware. Our evaluation investigates many aspects of our methods, and compares
the approaches to each other and to the state of the art.

13.1 Introduction

The fast and reliable estimation of the pose of the human body from images has
been a goal of computer vision for decades. Robust interactive pose estimation has
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applications including gaming, human-computer interaction, security, telepresence,
and even health-care. The recent availability of high-speed depth sensors has greatly
simplified the task [121, 144, 186, 293, 345, 423]. However, until the launch of the
Microsoft Kinect camera and gaming platform [247] in November 2010, even the
best systems exhibited failures when faced with unusual poses, occlusion, sensor
noise, and the constraints of super-realtime operation.

This paper describes two related approaches for estimating human pose from
Kinect depth images, illustrated in Fig. 13.1. We will refer to these as body part
classification (BPC) and offset joint regression (OJR). Both were designed with the
goals of computational efficiency and robustness in mind: our aim was to build sys-
tems that could run in super-realtime and for hours at a time without failing catas-
trophically. The algorithms output high-quality shortlists of confidence-weighted
proposals for the 3D locations of the skeletal body joints. These proposals are com-
puted at each frame and for each joint independently. Our original design was for
these proposals to provide initialization and per-frame recovery to complement any
appropriate tracking algorithm [41, 50, 121, 144, 346, 396]. These infer a com-
plete skeleton by exploiting kinematic constraints and can achieve high frame rates
by using temporal coherence from frame-to-frame. However, without regular re-
initialization, tracking algorithms are prone to catastrophic loss of track. Our exper-
iments below will demonstrate that even without temporal or kinematic information,
our per-frame, per-joint proposals are remarkably accurate, and might even be us-
able without a tracking algorithm.

Both BPC and OJR use an efficient decision forest that is applied at each pixel in
the image. Evaluating each pixel separately avoids any combinatorial search over
body joints. The forest uses simple yet discriminative depth comparison image fea-
tures that give 3D translation invariance while maintaining high computational ef-
ficiency. In an optimized implementation, these features and the classifier itself can
be evaluated in parallel across each pixel on a GPU [333] or multi-core CPU. Both
algorithms can run at super-realtime rates on consumer hardware, leaving sufficient
computational resources to allow complex game logic and graphics to run in par-
allel. Indeed, the BPC algorithm forms a core component of the skeletal tracking
pipeline that ships in the Kinect gaming platform [247].

Using depth images as input gives several advantages for human pose estima-
tion. Depth cameras work in low light conditions (even in the dark), help remove
ambiguity in scale, are largely color and texture invariant, and resolve silhouette am-
biguities. They also greatly simplify the task of background subtraction which we
assume in this work as a pre-processing step. Most importantly for our approaches,
since variations in color and texture are not imaged, it is relatively easy to synthesize
realistic depth images of people.

The two methods can thus share the use of a very large, realistic, synthetic train-
ing corpus, generated by rendering depth images of humans. Each render is assigned
randomly sampled parameters including body shape, size, pose, scene position, etc.
We can thus quickly and cheaply generate hundreds of thousands of varied images
with associated ground truth (the body part label images and the set of 3D body
joint positions). The availability of large amounts of training data allows us to train
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Fig. 13.1 Method overview on ground truth example. Body part classification (BPC) first predicts
a (color-coded) body part label at each pixel, and then uses these inferred labels to localize the
body joints. Offset joint regression (OJR) instead directly regresses the joint positions. The input
depth point cloud is shown overlaid on the body joint positions for reference

deep forests, without the risk of overfitting, that can naturally handle a full range
of human body shapes undergoing general body motions [378], self-occlusions, and
poses cropped by the image frame.

Body part classification, originally published in [343], was inspired by recent
object recognition work that divides objects into parts (e.g. [37, 107, 293, 403]).
BPC uses a classification forest (Chap. 4) to densely predict discrete body part labels
across the image. The pattern of these labels is designed such that the parts are
spatially localized near skeletal joints of interest. Given the depth image and the
known calibration of the depth camera, the inferred per-pixel label probabilities can
be reprojected to define a density over 3D world space. Offset joint regression [131]
instead employs a randomized regression forest to directly cast a set of 3D offset
votes from each pixel to the body joints. These votes are used to again define a world
space density. Modes of these density functions can be found using mean shift [69]
to give the final set of 3D body joint proposals. Optimized implementations of our
algorithms can run at around 200 frames per second on consumer hardware, at least
one order of magnitude faster than alternative approaches.

To validate our algorithms, we evaluate on both real and synthetic depth images,
containing challenging poses of a varied set of subjects. Even without exploiting
temporal or kinematic constraints, the 3D body joint proposals are both accurate
and stable. We investigate the effect of several training parameters and show a sub-
stantial improvement over the state of the art.

Our main contributions are as follows.

• We demonstrate that using efficient machine learning approaches, trained with a
large-scale, highly varied, synthetic training set, allows one to accurately predict
the positions of the human body joints in super-realtime.

• We show how a carefully designed pattern of body parts can transform the hard
problem of pose estimation into an easier problem of per-pixel semantic segmen-
tation.

• We examine both classification and regression objective functions for training the
decision forests, and obtain slightly surprising results that suggest a limitation of
the standard regression objective.



178 J. Shotton et al.

Fig. 13.2 Synthetic vs. real data. Pairs of depth images and corresponding color-coded ground
truth body part label images. The 3D body joint positions are also known (but not shown). Note
the wide variety in pose, shape, clothing, and crop. The synthetic images look remarkably similar
to the real images, lacking primarily just the high-frequency texture

• We employ regression models that compactly summarize the pixel-to-joint offset
distributions at leaf nodes. We show that these make our method both faster and
more accurate than Hough Forests [117]. We will refer to this as ‘vote compres-
sion’.

This chapter builds on our earlier publications [131, 343], and summarizes [344].
It unifies the notation, explains the approaches in more detail, and shows how they
naturally stem from the generic forest model presented in Chap. 3.

13.2 Data

Hundreds of thousands of labeled depth images are generated using a motion cap-
ture system and a 3D rendering software as explained in detail in [344]. A major
advantage of using synthetic training images is that the ground truth labels can be
generated almost for free (see Fig. 13.2), allowing one to scale up supervised learn-
ing to very large scales. The complete rendering pipeline allows us to rapidly sample
hundreds of thousands of unique images of people.

The particular tasks we address in this work, BPC and OJR, require different types
of label, described next.

Body Part Classification Labels Our first algorithm, BPC, aims to predict a dis-
crete body part label at each pixel. At training time, these labels are required for all
pixels, and we thus represent the labels as a color-coded body part label image that
accompanies each depth image (see Figs. 13.1 and 13.2). The use of an intermediate
body part representation that can localize 3D body joints is a key contribution of this
work. It transforms the pose estimation problem into one that can readily be solved
by efficient classification algorithms. The particular pattern of body parts used was
designed by hand to aid accurate joint localization in 3D.

The parts definition can be specified in a texture map and retargetted to the var-
ious 3D base character meshes for rendering. For our experiments, we define 31
body parts: LU/RU/LW/RW head, neck, L/R shoulder, LU/RU/LW/RW arm, L/R el-
bow, L/R wrist, L/R hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee, L/R
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ankle, and L/R foot (Left, Right, Upper, loWer). Distinct parts for left and right al-
low the classifier to learn to disambiguate the left and right sides of the body. The
precise definition of these parts might be changed to suit a particular application.
For example, in an upper body tracking scenario, all the lower body parts could be
merged into a single part.

Offset Joint Regression Labels Our second algorithm, OJR, instead aims to esti-
mate the 3D joint positions more directly. As such, the ground truth labels it requires
are simply the 3D joint positions. These are trivially recorded during the standard
mesh skinning process. In our experiments, we use 16 body joints: head, neck, L/R

shoulder, L/R elbow, L/R wrist, L/R hand, L/R knee, L/R ankle, and L/R foot. This
selection allows us to directly compare the BPC and OJR approaches on a common
set of predicted joints.

13.3 Method

Our algorithms cast votes for the position of the body joints by evaluating a decision
forest at each pixel in the input image. These votes are then aggregated to infer
reliable 3D body joint position proposals. In this section we describe: (1) the features
we employ to extract discriminative information from the image; (2) the structure of
a random forest, and how it combines multiple such features to achieve an accurate
set of votes; (3) the different leaf node prediction models used for BPC and OJR;
(4) how the pixel votes are aggregated into a set of joint position predictions at test
time; and (5) how the forests are learned.

13.3.1 Depth Image Features

We employ simple depth comparison features, inspired by those in [214]. Individ-
ually, these features provide only a weak discriminative signal, but combined in a
decision forest they prove sufficient to accurately disambiguate different appear-
ances and regions of the body. Using the notation in Chap. 3, at a given reference
pixel position u = (ux,uy), the feature response vector is computed as

v(u) = (
z(q1), . . . , z(qi ), . . . , z(qd)

)
(13.1)

with

qi = u + δi

z(u)
(13.2)

denoting the position of a probe pixel, where the parameter δ denotes a 2D offset
with respect to the reference position u. The function z(·) looks up the depth at a
given position in a particular image.
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Fig. 13.3 Depth image features. The yellow crosses indicate the reference image pixel u being
classified. The red circles indicate the offset pixels as defined in (13.3). In (a), the two example
features give a large depth difference response, i.e. |f (u;φ,ψ)| is large. In (b), the same two
features at new image locations give a much smaller response. In practice, many such features
combined in a decision forest provide a strong discriminative signal

In this application the split tests employed at internal nodes are simple differences
between two chosen coordinates of the vector v. In our general notation this corre-
sponds to defining the selector function as φ(v) = (vi, vj ) (with i, j ∈ {1, . . . , d}),
and defining ψ = (1,−1), fixed for all split nodes. Therefore, depths at two probes
offset from the reference u are subtracted from one another via

f (u;φ,ψ) = φ
(
v(u)

) · ψ . (13.3)

For efficiency, only the required elements of the whole feature vector v(u) are com-
puted.

If a probe pixel q lies on the background or outside the bounds of the image, the
depth probe z(q) is assigned a large positive constant value. The normalization of
the offsets by 1/z(u) ensures that the feature response is depth invariant: at a given
point on the body, a fixed world space offset will result whether the depth pixel is
close or far from the camera. The features are thus 3D translation invariant, modulo
perspective effects.

During training of the tree structure, offsets δ are sampled at random within a box
of fixed size. We further set δ2 = 0 with probability 1/2. This means that roughly
half the features evaluated are ‘unary’ (look at only one offset pixel) and half are
‘binary’ (look at two offset pixels).

Figure 13.3 illustrates two different features. The unary feature with parameters
φ1 looks upwards: (13.3) will give a large positive response for pixels u near the top
of the body, but a value close to zero for pixels u lower down the body. By similar
reasoning, the binary feature (φ2) may be seen instead to help find thin vertical
structures such as the arm.

The design of these features was strongly motivated by their computational effi-
ciency: no pre-processing is needed; each feature need only read at most three image
pixels and perform at most five arithmetic operations. Further, these features can be
straightforwardly implemented on the GPU. Given a larger computational budget,
one could employ potentially more powerful features based on, for example, depth
integrals over regions, curvature, or more complex local descriptors such as shape
contexts [24].
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13.3.2 Weak Learners

A forest is an ensemble of T decision trees, each consisting of split and leaf nodes.
We will use n to denote any node in the tree, and l to denote a leaf node specif-
ically. Each split node contains a ‘weak learner’ represented by its parameters
θ = (φ,ψ, τ ). In this application the parameters φ and ψ have already been de-
fined in the previous section. The symbol τ denotes a scalar threshold. To make a
prediction for pixel u in a particular image, one starts at the root and traverses a path
to a leaf by repeated evaluating the following weak learner function at each split
node n:

h(u; θn) = [
f (u;φn,ψ) ≥ τn

]
, (13.4)

where [·] is the 0–1 indicator. If h(u; θn) evaluates to 0, the path branches to the left
child of n, otherwise it branches to the right child. This repeats until a leaf node l

is reached. We will use l(u) to indicate the particular leaf node reached for pixel u.
The same algorithm is applied at each pixel for each tree t , resulting in the set of
leaf nodes reached L(u) = {lt (u)}Tt=1.

13.3.3 Leaf Node Prediction Models

At each leaf node l in each tree is stored a learned prediction model. In this work we
use two types of prediction model. For BPC, where a classification forest is used, the
prediction model is a probability mass function pl(c) over body parts c. For OJR,
where a regression forest is used, the prediction model is instead a set of weighted
relative votes Vlj for each joint j . In this section we describe these two models, and
show how both algorithms can be viewed as casting a set of weighted world space
votes for the 3D positions of the each joint in the body. Section 13.3.4 will then
show how these votes are aggregated in an efficient smoothing and clustering step
based on mean shift to produce the final 3D body joint proposals.

Body Part Classification (BPC) BPC predicts a discrete body part label at each
pixel as an intermediate step towards predicting joint positions. The classification
forest approach achieves this by storing a distribution pl(c) over the discrete body
parts c at each leaf l. For a given input pixel u, the tree is descended to reach leaf l =
l(u) and the distribution pl(c) is retrieved. The distributions are averaged together
for all trees in the forest to give the final classification as

p(c|u) = 1

T

∑

l∈L(u)

pl(c). (13.5)

One can visualize the most likely body part inferred at each pixel as an image, and
examples of this are given in Fig. 13.6. One might consider smoothing this signal
in the image domain. For example, one might use probabilities p(c|u) as the unary
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Algorithm 13.1 Body part classification voting

1: initialize X BPC
j

= ∅ for all joints j

2: for all foreground pixels u in the test image do
3: evaluate forest to reach leaf nodes L(u)

4: evaluate distribution p(c|u) using (13.5)
5: compute 3D pixel position x(u) = (x(u), y(u), z(u))�
6: for all joints j do
7: compute pushed-back position xj (u) = x(u) + ζ j

8: lookup relevant body part c(j)

9: compute weight w as p(c = c(j)|u) · z2(u)

10: add vote (xj (u),w) to set X BPC
j

11: return set of votes X BPC
j

for each joint j

term in a conditional random field with a pairwise smoothness prior [338]. However,
since the per-pixel signal is already very strong and such smoothing would likely be
expensive to compute, we do not use such a prior.

The image space predictions are next reprojected into world space. We denote
the reprojection function as x(u) = (x(u), y(u), z(u))�. Here x, y, z denote point
coordinates in 3D. Conveniently, the known z(u) from the calibrated depth camera
allows us to compute x(u) and y(u) straightforwardly.

Next, we must decide how to map from surface body parts to interior body joints.
In Sect. 13.2 we defined many, though not all, body part labels c to spatially align
with the body joints j , and, conversely, most joints j have a specific part label c.
We will thus use c(j) to denote the body part associated with joint j .

Now, no matter how well aligned in the x and y directions, the body parts inher-
ently lie on the surface of the body. They thus cannot align in the z direction with the
interior body joint position we are after (see Fig. 13.1). We therefore use a learned
per-joint vector ζ j = (0,0, ζj )

� that pushes the reprojected pixel surface positions
back into the world to better align with the interior joint position: xj (u) = x(u)+ζ j .
This simple approach implicitly assumes each joint is spherical, but works well and
efficiently in practice. As a rough indication, the mean across the different joints of
the learned push-backs ζ is 0.04 m.

We finally create the set X BPC
j of weighted world space votes using Algo-

rithm 13.1. These votes will be used in the aggregation step below. As you see,
the position of each vote is given by the pushed-back world space pixel position
xj (u). The vote weight w is given by the probability mass for a particular body
part, multiplied by the squared pixel depth. This depth-weighting compensates for
observing fewer pixels when imaging a person standing further from the camera,
and ensures the aggregation step is depth invariant. In practice this gave a small but
consistent improvement in joint prediction accuracy.

Note that each pixel produces exactly one vote for each body joint, and these
votes all share the same world space position. In practice many of the votes will have
zero probability mass and can be ignored. This contrasts with the OJR prediction
model, described next, where each pixel can cast several votes for each joint.
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Offset Joint Regression (OJR) The OJR approach aims to predict the set of
weighted votes directly, without going through an intermediate representation. The
forest used here is a regression forest [78, 80] since the leaves make continuous
predictions (see also Chap. 5). At each leaf node l we store a distribution over the
relative 3D offset from the reprojected pixel coordinate x(u) to each body joint j of
interest. Each pixel can thus potentially cast votes to all joints in the body, and un-
like BPC, these votes may differ in all three coordinate dimensions and thus directly
predict interior rather than surface positions.

Ideally, one would like to make use of a distribution of such offsets. Even for
fairly deep trees, we have observed highly multi-modal empirical offset distributions
at the leaves. Thus for many nodes and joints, approximating the distribution over
offsets as a Gaussian would be inappropriate. One alternative, Hough forests [117],
represents the distribution non-parametrically as the set of all offsets seen at training
time (see also Chap. 11). However, Hough forests trained on our large training sets
would require vast amounts of memory and be prohibitively slow for a realtime
system.

We therefore, in contrast to [117, 210], represent the distribution using a small
set of 3D relative vote vectors Δljk ∈ R

3. The subscript l denotes the tree leaf node
(as before), j denotes a body joint, and k ∈ {1, . . . ,K} denotes a cluster index.1 We
have found K = 1 or 2 has given good results, and while the main reason for keeping
K small is efficiency, we also empirically observed that increasing K beyond 1
gives only a very small increase in accuracy. As described below, the relative votes
Δljk are obtained by clustering an unbiased sample of all offsets seen at training
time using mean shift (see Sect. 13.3.5.2). Unlike [257], a corresponding confidence
weight wljk is assigned to each vote, given by the size of its cluster. We will refer
below to the set of relative votes for joint j at node l as Vlj = {(Δljk,wljk)}Kk=1.

We detail the test-time voting approach for OJR in Algorithm 13.2, whereby the
set X OJR

j of absolute votes cast by all pixels for each body joint j is collected. As
with BPC, the vote weights are multiplied by the squared depth to compensate for
differing surface areas of pixels. Optionally, the set X OJR

j can be sub-sampled by
taking either the top Nsub weighted votes or instead Nsub randomly sampled votes.
Our results show that this can dramatically improve speed while maintaining high
accuracy.

Compared to BPC, OJR more directly predicts joints that lie behind the depth
surface, and can cope with joints that are occluded or outside the image frame.
Figure 13.4 illustrates the voting process for OJR.

13.3.4 Aggregating Predictions

We have seen above how, at test time, both BPC and OJR can be seen as casting a
set of weighted votes in world space for the location of the body joints. These votes

1We use K to indicate the maximum number of relative votes allowed. In practice we allow some
leaf nodes to store fewer than K votes for some joints.
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Algorithm 13.2 Offset joint regression voting

1: initialize X OJR
j

= ∅ for all joints j

2: for all foreground pixels u in the test image do
3: evaluate forest to reach leaf nodes L(u)

4: compute 3D pixel position x(u) = (x(u), y(u), z(u))�
5: for all leaves l ∈L(u) do
6: for all joints j do
7: lookup weighted relative vote set Vlj

8: for all (Δljk,wljk) ∈ Vlj do
9: compute absolute position x = x(u) + Δljk

10: compute weight w as wljk · z2(u)

11: add vote (x,w) to set X OJR
j

12: sub-sample X OJR
j

to contain at most Nsub votes

13: return sub-sampled vote set X OJR
j

for each joint j

Fig. 13.4 Offset joint regression voting at test time. Each pixel (black square) casts a 3D vote
(orange line) for each joint. Mean shift is used to aggregate these votes and produce a final set
of 3D predictions for each joint. The highest confidence prediction for each joint is shown. Note
accurate prediction of internal body joints even when occluded

must now be aggregated to generate reliable proposals for the positions of the 3D
skeletal joints, the final output of our algorithm. As we will see in our experiments,
these proposals can accurately localize the positions of body joints from a single
image. By producing multiple proposals for each joint we can capture some of the
inherent uncertainty in the data. Given a whole sequence, these proposals could also
be used by a tracking algorithm to self-initialize and recover from failure.

A simple option for aggregating the votes might be to accumulate the global
centroid of the votes for each joint. However, the votes are typically highly multi-
modal, and so such a global estimate is inappropriate. Instead we employ a local
mode finding approach based on mean shift [69].

We first define a Gaussian Parzen density estimator per joint j as

pm
j

(
x′) ∝

∑

(x,w)∈Xm
j

w · exp

(
−

∥∥∥∥
x′ − x
bm
j

∥∥∥∥

2)
, (13.6)
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where x′ is a coordinate in 3D world space, m ∈ {BPC, OJR} indicates the approach,
and bm

j is a learned per-joint bandwidth.
Mean shift is then used to find modes in this density efficiently. The algorithm

starts at a subset X̂m
j ⊆ Xm

j of the votes, and iteratively walks up the density by
computing the mean shift vector [69] until convergence. Votes that converge to the
same 3D position within some tolerance are grouped together, and each group forms
a body joint proposal, the final output of our system. A confidence weight is assigned
to each proposal as the sum of the weights w of the votes in the corresponding
group. For both BPC and OJR this proved considerably more reliable than taking
the modal density estimate (i.e. the value pj (x′)). For BPC the starting point subset
X̂ BPC

j is defined as all votes for which the original body part probability was above
a learned probability threshold αc(j). For OJR, all votes are used as starting points,
i.e. X̂ OJR

j =X OJR
j .

13.3.5 Training

Each tree in the decision forest is trained on a set of images randomly synthe-
sized as described in Sect. 13.2. Each image is fully labeled: for BPC there is one
body part label c per foreground pixel u, and for OJR there is instead one pose
P = (p1, . . . ,pJ ) of 3D joint position vectors pj per training image. For notational
simplicity, we will assume that u uniquely encodes a 2D pixel location in a par-
ticular image, and thus can range across all pixels in all training images. A random
subset of Nex = 2000 example pixels from each image is used. Using a subset of pix-
els reduces training time and ensures a roughly even contribution from each training
image.

The following sections describe training the structure of the trees, the leaf node
prediction models, and the hyper-parameters.

13.3.5.1 Tree Structure Training

To train the tree structure, and thereby the weak learner parameters used at the split
nodes, we use the standard greedy decision tree training algorithm. At each split
node n, a set Tn ⊆ T of many candidate weak learner parameters is sampled. Each
candidate parameter θ ∈ Tn is then evaluated against an objective function H (these
θ parameters are those used in (13.4)). Each sampled θ induces a partition of the
input set Sn of all training pixels that reached the node n, into left SL

n (Sn, θ) and
right SR

n (Sn, θ) subsets, according to the evaluation of the weak learner function
(13.4). The best θ is selected by maximizing a measure of information gain, or
equivalently by minimizing the following:

θn = arg min
θ∈Tn

∑

i∈{L,R}

|S i
n|

|Sn|H
(
S i

n(Sn, θ)
)
. (13.7)
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Minimizing the above objective function minimizes the objective H while balancing
the sizes of the left and right partitions. If the tree is not too deep, the algorithm
recurses on the example sets SLn (Sn, θn) and SRn (Sn, θn) for the left and right child
nodes, respectively. In this chapter we investigate both classification and regression
specialization of the generic objective function H .

Training the tree structure is by far the most expensive part of the training pro-
cess, since many candidate parameters must be tried at an exponentially growing
number of tree nodes as the depth increases. To keep the training times practical we
employ a distributed implementation. At the high end of our experiments, training
three trees to depth 20 from 1 million images takes about a day on a 1000 core
cluster. (GPU-based implementations are also possible and might be considerably
faster.) The resulting trees each have roughly 500K nodes, suggesting fairly bal-
anced trees. We next describe the two objective functions investigated in this work.

Classification The standard classification objective H cls(S) is the Shannon en-
tropy of the distribution of the known ground truth labels corresponding to the pixels
in S . Entropy is computed as

H cls(S) = −
∑

c

p(c|S) logp(c|S), (13.8)

where p(c|S) is the normalized histogram of the set of body part labels c(u) for all
u ∈ S .

Regression Here, the objective is to partition the examples to give nodes with
minimal uncertainty in the joint offset distributions at the leaves [117, 155]. In our
problem, the offset distribution for a given tree node is likely to be highly multi-
modal (see examples in Fig. 13.5). One approach might be to fit a Gaussian mixture
model (GMM) to the offsets and use the negative log likelihood of the offsets un-
der this model as the objective. However, GMM fitting would need to be repeated
at each node for thousands of candidate weak learners, making this prohibitively
expensive. Following existing work [117], we employ the much cheaper sum-of-
squared-differences objective:

H reg(S) =
∑

j

∑

u∈Sj

‖Δu→j − μj‖2
2, (13.9)

where offset vector Δu→j = pj − x(u), and

μj = 1

|Sj |
∑

u∈Sj

Δu→j , (13.10)

Sj = {
u ∈ S | ‖Δu→j‖2 < ρ

}
. (13.11)

Unlike [117], we introduce an offset vector length threshold ρ to remove offsets
that are large and thus likely to be outliers. While this model implicitly assumes a
uni-modal Gaussian, which we know to be unrealistic, this assumption is tractable
for learning the tree structure and can still produce satisfactory results.
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Fig. 13.5 Empirical offset distributions for offset joint regression. We visualize the set Rlj of 3D
relative offset vectors Δu→j . Each set of axis represents a different leaf node, and the orange
squares denote the vectors Δu→j ∈ Rlj at that leaf. (The red, green, and blue squares indicate,
respectively, the positive x, y, and z axes; each half-axis represents 0.5m in world space.) We also
show training images for each node illustrating the pixel that reached the leaf node as a cyan cross,
and the offset vector as an orange arrow. Note how the decision trees tend to cluster pixels with
similar local appearance at the leaves, but the inherent remaining ambiguity results in multi-modal
offset distributions. The OJR algorithm compresses these distributions to a very small number of
modes while maintaining high test accuracy

Discussion Recall that the two objective functions above are used for training the
tree structure. We are then at liberty to fit the leaf prediction models in a different
fashion (see next section). Perhaps counter-intuitively, we observed in our experi-
ments that optimizing with the classification objective H cls works well for the OJR

task. Training for classification will result in image patches reaching the leaf nodes
that tend to have both similar appearances and local body joint configurations. This
means that for nearby joints, the leaf node offsets are likely to be small and tightly
clustered. The classification objective further avoids the assumption of the offset
vectors being Gaussian distributed. See [344] for more discussion.

We did investigate further node splitting objectives, including various forms of
mixing body part classification and regression (as used in [117]), as well as variants
such as separate regression forests for each joint. However, for our application, none
proved better than either the standard classification or regression objectives defined
above.

13.3.5.2 Leaf Node Prediction Models

Given the learned tree structure, we must now train the prediction models at the leaf
nodes. For the BPC task, we simply take pl(c) = p(c|S), the normalized histogram
of the set of body part labels c(u) for all pixels u ∈ S that reached leaf node l.

For OJR, we must instead build the weighted relative vote sets

Vlj = {
(Δljk,wljk)

}K

k=1 (13.12)
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Algorithm 13.3 Learning relative votes
1: // Collect relative offsets
2: initialize Rlj = ∅ for all leaf nodes l and joints j

3: for all training pixels u ∈ S do
4: descend tree to reach leaf node l = l(u)

5: compute 3D pixel position x(u)

6: for all joints j do
7: lookup ground truth joint positions P = {pj }
8: compute relative offset Δu→j = pj − x(u)

9: store Δu→j in Rlj with reservoir sampling
10: // Cluster
11: for all leaf nodes l and joints j do
12: cluster offsets Rlj using mean shift
13: discard modes for which ‖Δljk‖2 > threshold λj

14: take top K weighted modes as Vlj

15: return relative votes Vlj for all nodes and joints

for each leaf and joint. To do this, we employ a clustering step using mean shift,
detailed in Algorithm 13.3. This algorithm describes how each training pixel induces
a relative offset to all ground truth joint positions,2 and once aggregated across all
training images, these are clustered using mean shift. To maintain practical training
times and keep memory consumption reasonable we use reservoir sampling [392]
to maintain a fixed-size unbiased sample of Nres offsets.

Mean shift mode detection is again used for clustering, this time on the following
density:

plj

(
Δ′) ∝

∑

Δ∈Rlj

exp

(
−

∥∥∥
∥
Δ′ − Δ

b�

∥∥∥
∥

2)
. (13.13)

This is similar to (13.6), though now defined over relative offsets, without weight-
ing, and using a shared bandwidth b�. Figure 13.5 visualizes a few examples sets
Rlj that are clustered. The positions of the modes form the relative votes Δljk and
the numbers of offsets that reached each mode form the vote weights wljk . To prune
out long range predictions which are unlikely to be reliable, only those relative votes
that fulfil a per joint distance threshold λj are stored.3 We found that there is little
or no benefit in storing more than K = 2 relative votes per leaf.

In our unoptimized implementation, learning these relative votes for 16 joints
in three trees trained with 10k images took approximately 45 minutes on a single
8-core machine. The vast majority of that time is spent traversing the tree; the use
of reservoir sampling ensures the time spent running mean shift totals only about 2
minutes.

2Recall that for notational simplicity we are assuming u defines a pixel 2D position in a particular
image; the ground truth joint positions P will therefore correspond for each particular image.
3This threshold could equivalently be applied at test time though would waste memory in the tree.
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13.4 Experiments

This section briefly evaluates the two proposed algorithms with respect to one an-
other and in comparison with state of the art. A more thorough evaluation and de-
scription of the metrics may be found in [344].

13.4.1 Test Data

We use both synthetic and real depth images to evaluate our approach. For the syn-
thetic test set (‘MSRC-5000’), we synthesize 5000 test depth images, together with
the ground truth body part labels and body joint positions, as described in Sect. 13.2.
However, to ensure a fair and distinct test set, the original mocap poses used to gen-
erate these test images are held out from the training data. We also evaluate on the
real test depth data from [121]. Interestingly, our synthetic test set appears to be far
‘harder’ than the real test set due to its extreme variability in pose and body shape.

13.4.2 Qualitative Results

Figure 13.6 shows example inferences for both the BPC and OJR algorithms. Note
high accuracy of both classification and joint prediction, across large variations in
body and camera pose, depth in scene, cropping, and body size and shape (e.g. small
child vs. heavy adult). Note that no temporal or kinematic constraints (other than
those implicitly encoded in the training data) are used for any of our results. When
tested on video sequences (not shown), most joints can be accurately predicted in
most frames with remarkably little jitter.

A few failure modes are evident: (i) difficulty in distinguishing subtle changes in
depth such as the crossed arms; (ii) for BPC, the most likely inferred part may be in-
correct, although often there is still sufficient correct probability mass in distribution
p(c|u) that an accurate proposal can still result during clustering; and (iii) failure
to generalize well to poses not present in training. However, the inferred confidence
values can be used to gate bad proposals, maintaining high precision at the expense
of recall.

In these and other results below, unless otherwise specified, the following training
parameters were used. We trained three trees in the forest. Each was trained to depth
20, on 300K images per tree, using Nex = 2000 training example pixels per image.
At each node we tested 2000 candidate offset pairs δ and 50 candidate thresholds τ

per offset pair, i.e. |Tn| = 2000 × 50 fixed for all split nodes.
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Fig. 13.6 Example inferences on both synthetic and real test images. In each example we see the
input depth image, the inferred most likely body part labels (for BPC only), and the inferred body
joint proposals shown as front, right, and top views overlaid on a depth point cloud. Only the most
confident proposal for each joint above a fixed, shared threshold is shown, though the algorithms
predict multiple proposals per joint. Both algorithms achieve accurate prediction of body joints
for varied body sizes, poses, and clothing. We show failure modes in the bottom rows of the two
panels. There is little qualitatively to tell between the two algorithms, though the middle row of the
OJR results shows accurate prediction of even occluded joints (not possible with BPC), and further
results in Sect. 13.4.3 compare quantitatively

Fig. 13.7 Comparing body part classification (BPC) with offset joint regression (OJR). (a) Effect
of total number of training images. (b) Average precision on each of the 16 test body joints

13.4.3 Comparison Between BPC and OJR

Figure 13.7(a) compares mean average precision of joint location for different train-
ing set sizes. In all cases we observe OJR performing more accurately than BPC. In
Fig. 13.7(b) we show a per-joint breakdown of these results, using the best results
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Fig. 13.8 Comparison with [121]. Even without the kinematic and temporal constraints exploited
by [121], both our approaches are able to more accurately localize body joints

obtained for each method (900k and 300k training images for BPC and OJR, respec-
tively).4 An optimized implementation of both approaches can run at around 200
frames per second.

There are several possible reasons for OJR giving a more accurate result than BPC.
One possibility is that OJR can directly regress the positions of joints inside the body.
The joints showing the most substantial improvements (head, neck, shoulders, and
knees) are also those where surface body parts cover a large area and are furthest
from the joint center. Another ability of OJR is predicting occluded joints. When
the mean average precision (mAP) metric is changed to penalize failure to predict
occluded joints, the improvement of OJR over BPC is even more apparent: 0.663 vs.
0.560 mAP (both methods trained with 30k images). Example inferences showing
localization of occluded joints are presented in Fig. 13.6 (OJR panel, middle row).

13.4.4 Comparison to Ganapathi et al. [121]

The authors of [121] kindly provided their test data and results for direct com-
parison. Their algorithm uses sparse body part proposals from [293] and further
tracks the skeleton with kinematic and temporal information. Their real data come
from a time-of-flight depth camera with very different noise characteristics to our
structured light sensor. Without any changes to our training data or algorithm,
Fig. 13.8(a) shows considerably improved joint prediction average precision for
both BPC and OJR. Our algorithms also run at least 10 times faster. Further ex-
perimental details, results, and comparisons are available in [344].

13.5 Conclusions

We have presented two algorithms, body part classification and offset joint regres-
sion. The two algorithms have much in common. They both use decision forests and

4The results for OJR at 300k images were so compelling we chose not to expend the considerable
energy in training a directly comparable 900k forest.
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simple depth-invariant image features. Both methods exploit a large, highly varied,
synthetic training set, allowing us to train very deep trees. We have shown that the
forests can learn invariance to both pose and shape while avoiding overfitting. The
BPC approach introduces a set of surface body parts that a classification forest tries
to infer. These body parts are aligned with the joints of interest, so that an accu-
rate classification will localize the joints of the body. The OJR approach instead
casts votes that try to directly predict the positions of interior body joints. In both
methods, mean shift is used to aggregate votes to produce a final set of confidence-
weighted 3D body joint proposals.

Our experiments have demonstrated that both algorithms can accurately predict
the 3D locations of body joints in super-realtime from single depth images. We have
further shown state of the art accuracy and speed against a competing approach.

Of our two approaches, which should you use? The numerical results show that
OJR will give considerably higher accuracy than BPC. OJR also seems intuitively a
‘cleaner’ solution: it does not need the intermediate definition of body parts, and
the offsets vote directly for interior joint positions. This also means that OJR is ca-
pable of predicting occluded joints, while BPC will instead give no proposals for
an occluded joint. However, OJR proved considerably more complex: the obvious
regression objective does not work well, and many hyper-parameters had to be op-
timized against a validation set. A promising direction for future work is to investi-
gate alternative tree structure learning objectives that handle multi-modal problems
effectively.



Chapter 14
Anatomy Detection and Localization in 3D
Medical Images

A. Criminisi, D. Robertson, O. Pauly, B. Glocker, E. Konukoglu, J. Shotton,
D. Mateus, A. Martinez Möller, S.G. Nekolla, and N. Navab

This chapter discusses the use of regression forests for the automatic detection
and simultaneous localization of multiple anatomical regions within computed to-
mography (CT) and magnetic resonance (MR) three-dimensional images. Impor-
tant applications include: organ-specific tracking of radiation dose over time; se-
lective retrieval of patient images from radiological database systems; semantic
visual navigation; and the initialization of organ-specific image processing opera-
tions. We present a continuous parametrization of the anatomy localization prob-
lem, which allows it to be addressed effectively by multivariate random regression
forests (Chap. 5). A single pass of our probabilistic algorithm enables the direct
mapping from voxels to organ location and size, with training focusing on maxi-
mizing the confidence of output predictions. As a by-product, our method produces
salient anatomical landmarks, i.e. automatically selected “anchor” regions which
help localize organs of interest with high confidence. This chapter builds upon the
work in [78, 286] and demonstrates the flexibility of forests in dealing with both CT
and multi-channel MR scans. Quantitative validation is performed on two ground
truth labeled datasets: (i) a database of 400 highly variable CT scans, and (ii) a
database of 33 full-body, multi-channel MR scans. In both cases localization errors
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are reduced and results are more stable than those from more conventional atlas-
based registration approaches. The simplicity of the regressor’s context-rich visual
features yield typical run-times of only 4 seconds per scan on a standard desktop.
This anatomy recognition algorithm has now received FDA approval and is part of
Caradigm’s Amalga (www.caradigm.com).

14.1 Introduction

This chapter presents a new algorithm for the efficient detection and localization
of anatomical structures (‘organs’) in CT and MR 3D images. A possible appli-
cation is the automatic estimation of cumulative radiation dose being absorbed by
the patient’s individual organs during their lifetime, an important topic in modern
radiology. Another application is the efficient retrieval of selected portions of pa-
tients’ scans from radiological databases (PACS systems). When a physician wishes
to inspect a particular organ, the ability to determine its position and extent auto-
matically means it is not necessary to retrieve the entire scan (which could comprise
gigabytes of data) but only a small region of interest, thus making economical use of
the limited bandwidth. Other applications include single-click semantic navigation,
automatic hyper-linking of textual radiological reports to the corresponding image
regions, and the initialization of organ-specific image processing operations.

The main contribution of this work is a new parametrization of the anatomy lo-
calization task as a continuous multivariate parameter estimation problem. This is
addressed effectively via non-linear regression, in the form of regression forests
(see Chap. 5 and our previous work in [78, 286]). Our approach is fully proba-
bilistic and, unlike previous techniques (e.g. [106, 422]), maximizes the confidence
of output predictions. As a by-product, our method yields salient anatomical land-
marks, i.e. automatically selected “anchor” regions that help localize organs of inter-
est with high confidence. Our algorithm can localize both macroscopic anatomical
regions1 (e.g. abdomen, thorax, trunk, etc.) and smaller scale structures (e.g. heart,
left adrenal gland, femoral neck, etc.) using a single model (cf. [108]).

The focus of our approach is both on accuracy of prediction and speed of execu-
tion, as we wish to achieve anatomy localization in seconds.

Regression Approach Regression algorithms [152] estimate functions which
map input variables to continuous outputs.2 The regression paradigm fits the
anatomy localization task well. In fact, its goal is to learn the non-linear map-
ping from voxels directly to organ position and size. The work in [421] presents
a thorough overview of regression techniques and demonstrate the superiority of
boosted regression [115] with respect to e.g. kernel regression [380]. In contrast to

1DICOM tags for the anatomical region are often erroneous [147].
2As opposed to classification where the predicted variables are categorical.
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the boosted regression approach, maximizing confidence of output prediction is in-
tegral to our forest approach. An empirical comparison between boosting, forests
and cascades is found in [413].

Comparison with Classification-Based Approaches In [414] organ detection
is achieved via a confidence maximizing sequential scheduling of multiple, organ-
specific classifiers. In contrast, our single, tree-based regressor allows us to deal
naturally with multiple anatomical structures simultaneously. As shown in the ma-
chine learning literature [371] this encourages feature sharing and, in turn better
generalization. In [328] a sequence of PBT classifiers (first for salient slices, then
for landmarks) are used. In contrast, our single forest regressor maps directly from
voxels to organ locations and extents; latent, salient landmark regions are extracted
as a by-product. In [77] the authors achieve localization of organ centers but fail to
estimate the organ extent (similar to [117]). Here we present a more direct, continu-
ous model which estimates the position of the walls of the bounding box containing
each organ thus achieving simultaneous organ localization and extent estimation.

Comparison with Registration-Based Approaches Although atlas-based meth-
ods have enjoyed much popularity [106, 337, 408], their conceptual simplicity be-
lies the technical difficulty inherent in achieving robust, inter-subject registration.
Robustness may be improved by using multi-atlas techniques [170] but only at the
expense of multiple registrations and hence increased computation time. Our algo-
rithm incorporates atlas information implicitly, within a tree-based model. As shown
in the results section, such model is more efficient than keeping around multiple at-
lases and can achieve anatomy localization in only a few seconds. Comparisons with
global affine atlas registration methods (somewhat similar to ours in computational
cost) show that our algorithm produces lower errors and more stable localization
results. Next we describe details of our approach.

14.2 Organ Localization as Regression Task

This section presents mathematical notation, our parametrization of organ locations
within a medical scan, and the formulation of the localization problem as a regres-
sion task.

Following the notation set out in Chap. 3, vectors are represented in boldface
(e.g. p), matrices as teletype capitals (e.g. Λ), and sets in calligraphic style (e.g.
S). The position of a voxel in a volumetric image is denoted as a 3-vector p =
(px,py,pz). A voxel at position p is associated with a d-dimensional vector of
feature responses which is denoted as v(p) = (v1, . . . , vi, . . . , vd) ∈ R

d .

14.2.1 Parametrization and Regression Formulation

A 3D patient scan is represented by the intensity function J : Ω → R, where
Ω ⊂ N

3 is the image domain. Given a set C of organs of interest, we propose
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Fig. 14.1 Problem parametrization. (a) A 2D (coronal) view of a left kidney within a 3D CT scan,
and the associated ground truth bounding box (in orange). (b, c) Every voxel pi in the volume
votes for the position of the six walls of each organ’s 3D bounding box via six relative, offset
displacements dk(pi ) in the three canonical directions x, y and z

to model their absolute positions within the patient scan by a set of 3D bound-
ing boxes. Each bounding box bc contains one organ c ∈ C and is parametrized
as a 6-dimensional vector bc = (bLc , bRc , bAc , bPc , bHc , bFc ). Each vector element repre-
sents the absolute position (in mm) of one axis-aligned face.3 The goal of multi-
ple organ localization is to estimate simultaneously the parameters of the different
bounding boxes containing the organs of interest. Thus, the desired output is one
six-dimensional vector bc per organ, a total of 6 × |C| continuous parameters. In a
probabilistic fashion, we aim at modeling the probability distribution p(bc|v) for all
c ∈ C, so that given a previously unseen image and all per-voxel features {v}, we can
predict the location of all visible organs by estimating

b∗
c = arg max

bc

p(bc|V) with V = {
v(p) | p ∈ Ω

}
. (14.1)

More generally, one could also define the regression over a single distribution
p(b|v) with b = (b1, . . . ,bc, . . . ,b|C|) ∈ R

6|C|. This would allow to model inter-
organ location dependencies.

Key to our algorithm is the idea that all voxels in a test image contribute with
varying degrees of confidence to the estimates of the positions of all organs. For-
mally, we propose a probabilistic regression strategy in which each voxel p ∈ Ω

votes for the relative offsets to all organs’ bounding boxes. Thus, each voxel p in a
medical scan is associated with an offset with respect to the bounding box, bc for
each organ c ∈ C (see Fig. 14.1b, c). Such offset is a function of both p and c as fol-
lows: d(p; c) = p̂ − bc , with p̂ = (px,px,py,py,pz,pz). Therefore d(p; c) ∈ R

6.
Given a database of annotated scans, our goal becomes then to learn the conditional
distribution of 3D displacements p(d|c,v) for each organ c ∈ C.

Intuitively, some distinct voxel clusters (e.g. tips of ribs, or vertebrae) may pre-
dict the position of an organ (e.g. the heart) with high confidence. Ideally, at de-
tection time those clusters would be automatically detected and used as landmarks
for the localization of those organs. In contrast, clusters of voxels in larger regions

3Superscripts follow standard radiological orientation convention: L = left, R = right, A =
anterior, P= posterior, H= head, F= foot.
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of texture-less tissue or even air should contribute little to the estimation of organ
positions because of their higher prediction uncertainty. Therefore, our aim is to
learn to cluster voxels based on their appearance, their spatial context and, above
all, their confidence in predicting the position and size of all organs of interest. Note
that this is different from the task of assigning a categorical label to each voxel (i.e.
the classification approach in [77]). Here we wish to produce confident predictions
of a small number of continuous localization parameters. The latent voxel clusters
(think of them as some sort of predictive landmarks) are discovered automatically.

To tackle the simultaneous feature selection and parameter regression task, we
use a multivariate random regression forest (Chap. 5); i.e. an ensemble of regression
trees trained to predict the location and size of all organs simultaneously. Next we
describe the details of our approach.

14.3 Regression Forests for Organ Localization

This section presents how to solve the organ localization problem using multivariate
regression forests. First, we start by detailing the type of feature response we employ
in order to capture the visual appearance and contextual information of each voxel
within a medical scan. The feature responses form the input of the regression forest,
while the absolute organ locations are the output.

14.3.1 Feature Responses for Application in CT and MR

Medical images are acquired using different physical principles (e.g. based on
X-rays or magnetic resonance), and thus the images have very different visual ap-
pearance. Intensity values correspond to different physical properties, and image
analysis applications need to be tailored with respect to a specific imaging modality.
Motivated by the underlying imaging technique, we employ distinct visual features
for the two cases of CT and MR images.

The feature vector v(p) = (v1, . . . , vi, . . . , vd) ∈ R
d for a reference 3D voxel

location p is a collection of mean intensity values over (possibly) displaced feature
boxes, i.e.

vi = 1

|Fp;i |
∑

q∈Fp;i
J (q) (14.2)

where J (q) denotes the image intensity at position q in the image, and q ∈ Fp;i
are the image points within the feature box. The box Fp;i is displaced relative to
the reference point p (see Fig. 14.2). In theory, for each reference point we can de-
termine an infinite number of such features. In practice we will randomly generate
thousands of such features during the training phase, which is part of the feature
selection process of decision forests. The types of feature used here are similar to
those in [77, 117, 342], i.e. mean intensities over displaced, asymmetric cuboidal
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Fig. 14.2 Visual features. As shown on the left, voxel features in CT images are computed as the
mean intensity over a 3D cuboid displaced with respect to the reference voxel position. On the
right, voxel features in MR images are binary numbers encoding the difference between the mean
intensity computed over two 3D cuboids

regions within the volume. These features are efficient to compute via integral im-
ages/volumes [389] and are able to capture spatial context.

Similar to Chap. 13 we define a selector function

φ(v) = (vi, vj ) with i, j ∈ {1, . . . , d} (14.3)

thus, the tests applied by internal nodes will act upon scalar values computed as

f (p;φ,ψ) = φ
(
v(p)

) · ψ . (14.4)

Visual Features in CT Computed tomography images are characterized by the
fact that the intensity values directly indicate the tissue density (in Hounsfield units)
at a particular location. So, it makes sense to use absolute intensity values to con-
struct visual features. This is achieved readily by fixing ψ = (1,0) for all split nodes.

Visual Features in MR In magnetic resonance images, we cannot rely on the
absolute intensity values since there is no calibration between different scans. How-
ever, the relative intensity changes between different regions within the same scan
can provide important visual cues. In the case of MR it makes sense to construct
visual features which are invariant to global additive intensity biases and take into
consideration image gradients. This is achieved here by fixing ψ = (1,−1) for all
split nodes. This corresponds to taking the difference of mean intensities in two im-
age regions. As detailed in [286], the feature boxes can also be chosen by using a
predefined 3D pattern, and can be seen as a multi-scale 3D version of local binary
patterns [274].

The set of feature vectors is a crucial component of the regression function,
whose aim is to determine a functional mapping from the input feature space to
the output space of organ bounding boxes. We will now describe how this mapping
is learned.
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14.3.2 Regression Forest Learning

Weak Learners The training process constructs each regression tree and decides
at each node how to best split the incoming voxels. We are given a subset of all
labeled volumes (the training set), and the associated ground truth organ bounding
box positions (Fig. 14.1a). A subset of voxels in the training volumes is used for
forest training. These training voxels are sampled on a regular grid within ±10 cm
of the center of each axial slice in the training volume. The size of the forest T is
fixed and all trees are trained in parallel.

Each training voxel p is sent down each of the trees starting at the root. The j th
split node applies an axis-aligned weak learner test h(p, θ j ) and based on the result
sends the voxel to the left or right child node. The parameters θ j = (φj ,ψ, τj ) char-
acterize the weak learners associated with the j th node. The corresponding weak
learner is

h(p, θ j ) = [
f (p;φj ,ψ) > τj

]
. (14.5)

For application in CT, τ is a learned scalar parameter. Instead, in MR we usually
set τ = 0. As usual the voxel p is sent to the right child node if h is true and to the
left child node otherwise.

Objective Function Node optimization is driven by maximizing a continuous
information gain measure, defined in general terms as

I (S, θ) = H(S) −
∑

i={L,R}
ωiH

(
S i

)
(14.6)

where H denotes entropy, S is the set of training points reaching a node, L and R de-
note the left and right sets generated from S through the split defined by parameters
θ , and finally ωi = |S i |/|S|.

For a given organ c we model the continuous conditional distribution of the 3D
displacement d(p; c) at each node as a multivariate Gaussian; i.e.

p(d | c,S) = 1

(2π)
N
2 |Λc(S)|

e− 1
2 ((d−dc(S))�Λc(S)−1(d−dc(S))), (14.7)

with N = 6 and
∫
R6 p(d|c,S) dd = 1. The vector dc indicates the mean displace-

ment and Λc the 6 × 6 covariance matrix of d for all points in the set S .
In the context of organ localization, we incorporate an organ visibility prior in

the objective function. In fact, due to surgery or image cropping a given organ may
not be present or visible in a scan. For the set S this prior is defined as

p(c|S) = nc(S)/Z, (14.8)

where nc(S) is the number of training voxels in the set S for which it is possible to
compute the displacement d(p; c); i.e. the training points in the set that come from
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training volumes for which the organ c is present. Z is a normalization constant
which ensures that

∑
c p(c|S) = 1. Thus we can estimate the joint distribution for

displacement and organ class as

p(d, c|S) = p(d|c,S)p(c|S). (14.9)

Now, using the definition of the differential entropy of a Gaussian density and after
some algebraic manipulation we obtain the following joint entropy for the node:

H(d, c;S) = H(c;S) +
∑

c

p(c|S)

(
1

2
log

(
(2πe)N

∣∣Λc(S)
∣∣)

)
. (14.10)

The joint information gain is

I (S, θ) = H(d, c;S) −
∑

i∈{L,R}
ωiH

(
d, c;S i

)
, (14.11)

which after some manipulation can be rewritten as

I (S, θ) = Ireg(S, θ) + Icls(S, θ) (14.12)

where

Ireg(S, θ) = 1

2

(∑

c

p(c|S) log
∣∣Λc(S)

∣∣ −
∑

i∈{L,R}
ωi

∑

c

p
(
c|S i

)
log

∣∣Λc

(
S i

)∣∣
)

(14.13)
with ωi = |S i |/|S|, and

Icls(S, θ) = H(c;S) −
∑

i∈{L,R}
ωiH

(
c;S i

)
, (14.14)

with H(c;S) the standard Shannon entropy for categorical distributions.
We remember from Chap. 3 that optimizing the node parameters implies max-

imizing the information gain. Here nodes are trained via “randomized node opti-
mization”, as

θ j = arg max
θ∈Tj

I (S, θ). (14.15)

But maximizing (14.12) corresponds to minimizing the determinants of the 6 × 6
covariance matrices Λc (covariances defined over displacement random variables)
associated with the |C| organs, where each organ’s contribution is weighted by the
associated prior probability for its visibility. This decreases the uncertainty in the
probabilistic vote cast by each cluster of voxels on each organ pose. In our exper-
iments we have found that this prior-driven organ weighting produces more bal-
anced trees and has a noticeable effect on the accuracy of the results. In practice,
the visibility prior favors a clustering of points of both similar locations but also
corresponding to images with similar field-of-views.
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Stopping Criterion Branching stops when the number of points reaching the
node is smaller than a threshold nmin, or a maximum tree depth D has been reached.
After training, the j th split node remains associated with the parameters θ j . At each
leaf node we store the learned means dc and covariance matrices Λc , and the class
priors p(c).

This framework may be reformulated using non-parametric distributions, with
pros and cons in terms of regularization and storage. We have found our parametric
assumption not to be restrictive since the multi-modality of the input space is cap-
tured by our hierarchical piece-wise Gaussian model. However, under the simplify-
ing assumption that bounding box face positions are uncorrelated (i.e. diagonal Λc),
it is convenient to store at each leaf node learned 1D histograms over face offsets
p(d|c;S).

Discussion Equation (14.12) is an information-theoretical way of maximizing the
confidence of the desired continuous output for all organs, without going through
intermediate voxel classification (as in [77] where positive and negative examples of
organ centers are needed). Furthermore, this gain formulation enables testing differ-
ent context models, for example imposing a full covariance Λc would allow correla-
tions between all walls in each organ. One could also think of enabling correlations
between different organs. Taken to the extreme, this might have undesirable over-
fitting consequences. On the other hand, assuming diagonal Λc matrices can lead
to uncorrelated output predictions. Interesting models live in the middle ground,
where some but not all correlations are enabled to capture e.g. class hierarchies or
other forms of spatial context.

14.3.3 Regression Forest Prediction

Forest Testing Given a previously unseen image volume J , test voxels are sam-
pled in the same manner as at training time. Each test voxel p is pushed through each
tree starting at the root and the corresponding sequence of weak learners applied.
The voxel stops when it reaches its leaf node l(v(p)), with l indexing leaves across
the whole forest. The stored distribution p(dc|v, l) over relative displacements for
class c also defines the posterior for the absolute bounding box position: p(bc|v, l)

since bc(p) = p̂ − dc(p). Thus p(bc|v, l) is also a multivariate Gaussian. The forest
posterior for bc is now given by

p(bc|v) =
T∑

t=0

∑

l∈L̃t

p(bc|v, l)p(l). (14.16)

L̃t is a subset of the leaves of tree t . We select L̃t as the set of leaves corresponding
to the 75 % of all test voxels which have the highest confidence (for each class c).
Finally p(l) is simply the proportion of samples arriving at leaf l. Note that here the
leaf prediction model is a multivariate, probabilistic-constant model rather than the
more flexible probabilistic-linear one used in Chap. 5.
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Organ Localization The final prediction b∗
c for the absolute position of the cth

organ is given by

b∗
c = arg max

bc

p(bc|v). (14.17)

Under the assumption of uncorrelated output predictions for bounding box faces,
it is convenient to represent the posterior probability p(bc|v) as six 1D histograms,
one per face. We aggregate evidence into these histograms from the leaf distributions
p(bc|v, l). Then b∗

c is determined by finding the histogram maximum. Furthermore,
we can derive a measure of the confidence of this prediction by fitting a 6D Gaussian
with diagonal covariance matrix Λ∗ to the histograms in the vicinity of b∗

c . A useful
measure of the confidence of the prediction is then given by |Λ∗|−1/2.

Organ Detection The organ c is declared present in the scan if the prediction
confidence is greater than a manually chosen value β . The parameter β is tuned to
achieve the desired trade-off between the relative proportions of false positive and
false negative detections.

14.4 Results, Comparisons and Validation

This section assesses the proposed algorithm for anatomy localization within 3D
computed tomography and magnetic resonance scans in terms of accuracy, runtime
speed and memory efficiency, and compares it to state of the art techniques.

14.4.1 Anatomy Localization in Computed Tomography Scans

The Labeled CT Database We wish to recognize the following 26 anatomical
structures C = {abdomen, l./r. adrenal gland, l./r. clavicle, l./r. femoral neck, gall bladder,
head of l./r. femur, heart, l./r. atrium of heart, l./r. ventricle of heart, l./r. kidney, liver, l./r. lung,
l./r. scapula, spleen, stomach, thorax, thyroid gland}. We are given a database of 400
scans which have been manually annotated with 3D bounding boxes tightly drawn
around the structures of interest (see Fig. 14.1a).

The database comprises patients with a wide variety of medical conditions and
body shapes and the scans exhibit large differences in image cropping, resolution,
scanner type, and use of contrast agents (Fig. 14.3). Voxel sizes are ∼0.5–1.0 mm
along x and y, and ∼1.0–5.0 mm along z. The images were not pre-registered.

A regression forest was trained using 318 volumes selected randomly from our
400-volume dataset. Organ localization accuracy was measured using the remaining
82 volumes, which contained a total of 1504 annotated organs of which 907 were
fully visible within the scan. Only organs that are entirely contained in the volumes
are used for training and test. Training and test volumes were downsampled using
nearest neighbor interpolation. Integer downsampling factors were chosen so that
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Fig. 14.3 Variability in our labeled CT database. (a, b, c) Variability in appearance due to presence
of contrast agent, or noise. (d) Difference in image geometry due to acquisition parameters and
possible anomalies. (e) Volumetric renderings of liver and spine to illustrate large changes in their
relative position and in the liver shape. (f, g) Mid-coronal views of liver and spleen across different
scans in our database to illustrate their shape variability. (The organ outlines, drawn by hand, are
highlighted in green). All CT scans are natively calibrated, both metrically and photometrically

Fig. 14.4 Precision-recall curves for some representative organ classes and for all organ classes.
The curves show how precision and recall change as the detection confidence threshold β is varied,
both for all organs and for a representative group of individual organs (several organ classes are
omitted to avoid clutter)

the resulting voxel pitch was as near as possible to 3 mm per voxel in the x, y,
and z directions. Downsampling to this resolution reduces memory usage without
noticeable reduction in accuracy.

Quantitative Evaluation To characterize the performance of the algorithm,
precision-recall curves are plotted (Fig. 14.4). In this context precision refers to
the proportion of organs that were correctly detected, and recall to the proportion of
reported detections that were correct. Here, a correct detection is considered to be
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a detection for which the centroid of the predicted organ bounding box is contained
by the ground truth bounding box.4 The plot shows how precision and recall vary as
the detection confidence β is varied.

In the figure the average precision remains high until recall reaches approxi-
mately 80 %. Accuracy is best for larger organs; those with smaller size or greater
positional variability are more challenging.

Table 14.1 shows mean localization errors, i.e. the absolute difference between
predicted and ground truth bounding box face positions. Errors are averaged over all
faces of the bounding boxes. Despite the large variability in our test data we obtain
a mean error of only 13.5 mm, easily sufficient for our intended applications. Errors
in the axial (z) direction are approximately the same as those in x and y despite
significantly more crop variability in this direction. Consistently good results are
obtained for different choices of training set as well as different training runs.

Computational Efficiency With our C# software running in a single thread, or-
gan detection for a typical 30 × 30 × 60 cm volume requires approximately 4 s of
CPU time for a typical four-tree forest. Most of the time is spent aggregating offset
distributions (which are represented as histograms) over salient leaves. However,
significant speed-up could be achieved with relatively simple code optimizations,
e.g. by using several cores in parallel for tree evaluation and histogram aggregation.

Comparison with Affine, Atlas-Based Registration An alternative strategy for
anatomy localization is to align the input volume with a suitable atlas, i.e. a refer-
ence scan for which organ bounding box positions are known. Approximate bound-
ing box positions in the input volume are then determined by using the computed
atlas alignment transformation to map bounding box locations from the atlas into
the input image.

Non-linear atlas registration (via non-rigid registration algorithms) can, in theory,
provide the most accurate localization results. In practice, however, this approach is
not robust to bad initialization and requires significantly greater computation times
than the approach we describe here. Since speed is an important aspect of our work,
here we chose to compare our results with those from comparably fast atlas-based
algorithms, i.e. those based on global affine registration. This is a rather approximate
approach because accuracy is limited by inter- and intra-subject variability in organ
location and size. However, it is robust and its computation times are close to those
of our method.

Instead of using a single atlas we use a multi-atlas approach due to its higher
accuracy [170]. From the training set, five scans were selected to be used as atlases.
The selected scans included three abdominal-thorax scans (one female, one male
and one slightly overweight male), one thorax scan, and one whole body scan. This

4This metric is appropriate in light of our intended data retrieval and semantic navigation appli-
cations because the bounding box centroid would typically be used to select which coronal, axial,
and sagittal slices to display to the user. If the ground truth bounding box contains the centroid of
the predicted bounding box, then the selected slices will intersect the organ of interest.
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Table 14.1 Regression forest results for CT. Bounding box localization errors in mm and associ-
ated standard deviations. The table compares results for our method with those for the Elastix and
Simplex methods. Lowest errors for each class of organ are shown in bold. Our method gives lower
errors for all organ classes

organ Our method Elastix Simplex

mean std mean std mean std

abdomen 14.4 13.4 34.6 74.2 27.6 36.5

l. adrenal gland 11.7 9.6 20.5 42.4 15.5 20.9

r. adrenal gland 12.1 9.9 22.2 45.0 18.2 29.6

l. clavicle 19.1 17.4 34.3 20.5 31.1 16.3

r. clavicle 14.9 11.6 39.0 44.3 24.1 13.9

l. femoral neck 9.7 7.5 38.3 78.5 16.1 15.4

r. femoral neck 10.8 8.3 38.4 82.3 17.3 17.7

gall bladder 18.0 15.0 28.1 54.5 23.2 26.6

l. head of femur 10.6 14.4 38.8 80.8 19.4 26.6

r. head of femur 11.0 15.7 39.6 84.9 19.1 28.4

heart 13.4 10.5 34.4 52.0 16.9 15.8

l. heart atrium 11.5 9.2 30.7 50.5 15.4 15.4

r. heart atrium 12.6 10.0 33.0 51.9 15.2 15.5

l. heart ventricle 14.1 12.3 35.9 51.7 18.1 16.7

r. heart ventricle 14.9 12.1 35.4 52.8 17.2 16.8

l. kidney 13.6 12.5 22.1 46.1 18.7 25.6

r. kidney 16.1 15.5 25.3 49.8 21.1 27.0

liver 15.7 14.5 26.9 53.3 23.2 30.4

l. lung 12.9 12.0 24.5 29.2 16.9 23.4

r. lung 10.1 10.1 25.0 27.2 16.0 21.7

l. scapula 16.7 15.7 50.9 54.1 33.1 20.1

r. scapula 15.7 12.0 44.4 41.2 22.7 12.4

spleen 15.5 14.7 29.0 46.6 23.0 22.8

stomach 18.6 15.8 27.6 48.9 22.8 23.4

thorax 12.5 11.5 36.5 37.4 25.3 35.1

thyroid gland 11.6 8.4 13.3 10.3 12.9 10.2

all organs 13.5 13.0 28.9 52.4 19.4 24.7

selection was representative of the overall distribution of image types in the dataset.
All five atlases were registered to all the scans in the test set. For each test scan, the
atlas that yielded the smallest registration cost was selected as the best one to rep-
resent that particular test scan. Registration was achieved using two different global
affine registration algorithms. The first algorithm (‘Elastix’) is that implemented
by the popular Elastix toolbox [184] and works by maximizing mutual information
using stochastic gradient descent. The second algorithm (‘Simplex’) is our own im-
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plementation and works by maximizing correlation-coefficient between the aligned
images using the simplex method as the optimizer [265]. In each case parameters
were optimized for best accuracy.

Resulting errors (computed on the same test set) are reported in Table 14.1. The
atlas registration techniques give larger mean errors and error standard deviation
(nearly double in the case of Elastix) compared to our approach. Furthermore, atlas
registration requires between 90 s and 180 s per scan (cf. our algorithm runtime is
∼4 s for T = 4 trees, on a single CPU core).

Figure 14.5 further illustrates the difference in accuracy between the three ap-
proaches. For the atlas registration algorithms, the error distribution’s larger tails
suggest a less robust behavior. This is reflected in larger values of the error mean
and standard deviation and is consistent with our visual inspection of the registra-
tions. In fact, in about 30 % of cases the registration process got trapped in local
minima and produced grossly inaccurate alignment. In those cases, results tend not
to be improved by using a non-linear registration step (which tends not to help the
registration algorithm to escape bad local minima, whilst increasing the runtime
considerably).

Automatic Landmark Detection Figure 14.6 visualises the anatomical landmark
regions that were automatically selected for organ localization. Given a trained re-
gression tree and an input volume, we select one or two leaf nodes with high pre-
diction confidence for a chosen organ class (e.g. left kidney). Then, for each sample
arriving at the selected leaf nodes, we shade in green the cuboidal feature boxes used
during weak learner evaluation. Those green regions represent some of the anatom-
ical locations that were automatically selected and used to predict the location of
the chosen organ. In this example, the bottom of the left lung and the top of the
left pelvis are used to predict the position of the left kidney. Similarly, the bottom
of the right lung is chosen to localize the right kidney. Such regions correspond to
meaningful, visually distinct, anatomical landmarks that have been discovered in a
completely unsupervised manner.

14.4.2 Anatomy Localization in Magnetic Resonance Scans

The Labeled MR Database As described in [286] we also have a database of 33
patients. For each patient we have available labeled MR Dixon 3D images [226].
This means that for each patient we have two image channels, a “water” channel Jw

and a “fat” channel J f . As these two channels are captured simultaneously, they
are aligned to each other. In this application, we propose to use both Jw and J f ,
i.e. to extract features in both channels. Just like in the CT database, an expert has
annotated different anatomical structures with axis-aligned bounding boxes. Here
we have annotated the following five anatomical structures: head, heart, l. lung, r. lung
and liver.
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Fig. 14.5 Comparison with
atlas-based registration.
Distributions of bounding box
localization errors for our
algorithm (‘Forest’) and two
atlas-based techniques
(‘Elastix’ and ‘Simplex’).
Error distributions are shown
separately for (a) left and
right, (b) anterior and
posterior, and (c) head and
foot faces of the detected
bounding boxes, and
(d) averaged over all
bounding box faces for each
organ. The error distributions
for the atlas techniques
(particularly in plots (c) and
(d)), have more probability
mass in the tails, which is
reflected by larger mean
errors and error standard
deviations
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Fig. 14.6 Automatic discovery of salient anatomical landmark regions. (a) A test volume and (b)
a 3D volume rendering of the left kidney’s bounding box, as detected by our algorithm. (c) The
highlighted green regions correspond to regions of the volume that were automatically selected as
salient predictors of the position of the kidneys

Comparative Experiments When dealing with MR images we chose to imple-
ment both random forests and their special case, random ferns (see Chap. 9). Both
are compared quantitatively with an atlas-based registration approach and the results
shown in Table 14.2. The reported lower and upper bounds correspond to the best
and worst results across different atlases. Of course, in practice, it is not possible to
know which atlas yields best results for a specific test image, so we report the mean
error achieved when averaging over the different atlas results. For further reading
on the relationship between forests and ferns please refer to Chap. 9 and [80].

The table shows that both regression forests and regression ferns achieve an ac-
curacy which is better than the best case atlas accuracy, while providing increased
robustness (smaller standard deviation of errors). Taking a look at the localization
error per organ, one can notice that the lowest error for our approach is achieved for
the localization of the head, which is due to the fact that the head is surrounded by a
lot of air which makes it easier to localize. While the heart shows the second lowest
error, lungs and liver were more difficult to localize. This is mainly due to the high
inter-patient variability of the shape of these organs. The best results were obtained
with 14 ferns and six nodes for random ferns, six trees of depth 8 for regression
forests. On a 64 Core Duo 2.4 GHz laptop running MATLAB the training/testing
time on 20/13 patients is only 0.7/0.5 s for random ferns. Decision forests need
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Table 14.2 Regression forest results for MR bounding box localization errors in mm and associ-
ated standard deviations. The table compares results for our method using random forest, random
ferns and multi-atlas registration

organ Random ferns Random forests Atlas
lower bound

Atlas
upper bound

Atlas mean

mean std mean std mean std mean std mean std

head 9.82 8.07 10.02 8.15 18.00 14.45 70.25 34.23 35.10 13.17

l. lung 14.95 11.35 14.78 11.72 14.94 11.54 60.78 29.47 30.41 11.39

r. lung 16.12 11.73 16.20 12.14 15.02 13.69 63.95 30.13 29.85 12.62

liver 18.69 13.77 18.99 13.88 18.13 16.26 70.59 32.88 31.74 13.49

heart 15.17 11.70 15.28 11.89 13.31 11.03 60.38 28.90 29.82 12.23

all organs 14.95 11.33 15.06 11.55 15.88 13.40 65.19 31.12 31.38 12.58

25/1 s. Concerning atlas registration, each single affine registration needs 12.5 s.
See [286] for more details.

14.5 Conclusion

Anatomy localization has been cast here as a non-linear regression problem where
all voxel samples vote for the position of all anatomical structures. Location esti-
mates are obtained by a multivariate regression forest algorithm that is shown to
be more accurate and efficient than competing registration-based techniques. At the
core of the algorithm is a new information-theoretic metric for regression tree learn-
ing which works by maximizing the confidence of the predictions over the position
of all organs of interest, simultaneously. Such strategy produces accurate predictions
as well as meaningful anatomical landmark regions.

Accuracy and efficiency have been assessed on a database of 400 diverse CT
studies as well as on a database of 33 2-channel MR Dixon sequences. Our algo-
rithm for anatomy detection and localization in 3D CT scans has now been validated
by the FDA and has been approved for commercial use.

In more academic settings, the usefulness of our algorithm has been demon-
strated in the context of systems for efficient visual navigation of 3D CT studies
[283] and robust linear registration [193]. Another application where regression
forests have been used is automatic vertebrae localization in arbitrary field-of-view
CT scans [133]. Here, the regression part is used to provide robust initialization
for a subsequent localization refinement stage based on a shape and appearance
model. Similarly, one could employ the organ localization as a first step in an or-
gan segmentation approach. Organ-specific algorithms could then be applied at the
predicted organ location, removing the often necessary step of manual interaction.



Chapter 15
Semantic Texton Forests for Image
Categorization and Segmentation

M. Johnson, J. Shotton, and R. Cipolla

Semantic texton forests (STFs) are a form of random decision forest that can be
employed to produce powerful low-level codewords for computer vision. Each de-
cision tree acts directly on image pixels, resulting in a codebook that bypasses the
expensive computation of filter-bank responses or local descriptors. Further, STFs
are extremely fast to both train and test, especially when compared with k-means
clustering and nearest-neighbor assignment of feature descriptors. The nodes in the
STFs provide both an implicit hierarchical clustering into semantic textons, and also
an explicit pixel-wise local classification estimate. In this chapter we (i) investigate
STFs as learned visual dictionaries; (ii) show how STFs can be used for both image
categorization and semantic segmentation by aggregating hierarchical bags of se-
mantic textons; (iii) demonstrate that STFs allow us to exploit semantic context in
segmentation; and (iv) show how a global image-level categorization can be used
as a prior to improve the accuracy of semantic segmentation. We also see that the
efficient tree structures of STFs allow at least a five-fold increase in execution speed
over competing techniques.
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Toshiba Corporate Research and Development Center respectively.
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Fig. 15.1 Semantic texton forests. (a) Test image, with ground truth in-set. Semantic texton forests
very efficiently compute (b) a set of semantic textons per pixel and (c) a rough per-pixel classifi-
cation (a prior for the subsequent segmentation). Our algorithm uses both the textons and priors
as features to give coherent semantic segmentation (d). Colors show texton indices in (b), but
categories corresponding to the ground truth in (c) and (d)

15.1 Introduction

This chapter discusses semantic texton forests, and demonstrates their use for image
categorization and semantic segmentation; see Fig. 15.1. Our aim is to show that one
can build powerful texton codebooks without computing expensive filter-banks or
descriptors, and without performing costly k-means clustering and nearest-neighbor
assignment. Semantic texton forests (STFs) achieve both these goals. STFs are ran-
domized decision forests that use only simple pixel comparisons on local image
patches, and output both an implicit hierarchical clustering into semantic textons
and an explicit local classification of the patch category.

We look at two applications of STFs: image categorization (inferring the object
categories present in an image) and semantic segmentation (dividing the image into
coherent regions and simultaneously categorizing each region). To these ends, we
propose the bag of semantic textons (BoST). The BoST is computed over a given
image region, and extends the bag of words model [81] by combining a histogram
of the hierarchical semantic textons with a region prior category distribution. For
categorization, we obtain a highly discriminative descriptor by considering the im-
age as a whole. For segmentation, we use many local rectangular regions and build
a second randomized decision forest that achieves efficient and accurate segmenta-
tion.

Inferring the correct segmentation depends on local image information that can
often be ambiguous. The global statistics of the image, however, are more discrim-
inative and may be sufficient to accurately estimate the image categorization. We
therefore investigate how an SVM-based image categorization can act as an image-
level prior to improve segmentation: the classification output of the SVM is used
as a prior to emphasizing the categories most likely to be present given the global
appearance of the image.

To summarize, the main topics in this chapter are: (i) semantic texton forests
which efficiently provide both a hierarchical clustering into semantic textons and
a local classification; (ii) the bag of semantic textons model, and its applications in
categorization and segmentation; (iii) how STFs allow us to exploit semantic context
for segmentation; and (iv) the use of the image-level prior to improve segmentation
accuracy.
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15.1.1 Related Work

Textons [176, 229, 381] and visual words [348] have proven powerful discrete im-
age representations for categorization and segmentation [81, 342, 404, 416]. Filter-
bank responses (derivatives of Gaussians, wavelets, etc.) or invariant descriptors
(e.g. SIFT [225]) are computed across a training set, either at sparse interest points
(e.g. [248]) or more densely; results in [267] suggest that densely sampling visual
words improves categorization accuracy. The collection of descriptors are then clus-
tered to produce a codebook of visual words, typically with the simple but effective
k-means, followed by nearest-neighbor assignment. Unfortunately, this three stage
process is extremely slow and often the most time consuming part of the whole
system, even with optimizations such as kd-trees, the triangle inequality [97], or
hierarchical clusters [266, 321].

The work of Moosmann et al. [253] proposed a more efficient alternative, in
which training examples are recursively divided using a randomized decision forest
[5, 44, 128] and where the splits in the decision trees are comparisons of a de-
scriptor dimension to a threshold. With semantic texton forests, we extend [253] in
three ways: (i) we learn a codebook that acts directly on image pixels, bypassing
the expensive step of computing image descriptors; (ii) while [253] use the learned
decision forest only for clustering, we also use it as a classifier, which enables us to
use semantic context for image segmentation; and (iii) in addition to the leaf nodes
used in [253], we include the split nodes as hierarchical clusters. A related method,
the pyramid match kernel (PMK) [141], exploits a hierarchy in descriptor space,
though the PMK requires the computation of feature descriptors and is primarily
applicable only to kernel-based classifiers. The pixel-based features we use are sim-
ilar to those in [214], but our forests are trained to recognize object categories, not
to match particular feature points.

Other work has also looked at alternatives to k-means. The work of [376] quan-
tized feature space into a hyper-grid, but required descriptor computation and can
result in very large visual word codebooks. Winder and Brown [402] learned the
parameters of generic image descriptors for 3D matching, though did not address
visual word clustering. Jurie and Triggs [177] proposed building codebooks using
mean shift, but did not incorporate semantic supervision in the codebook generation.

15.2 Randomized Decision Forests

We begin with a brief review of randomized classification forests [5, 128]. We follow
the notation and terminology introduced in Chaps. 3 and 4 as closely as possible.
A decision forest is an ensemble of T decision trees. Associated with each node j

in the tree is a learned class distribution pj (c). A decision tree works by recursively
branching left or right down the tree according to a series of learned binary functions
computed at 2D pixel position u = (ux,uy), until a leaf node l is reached. The
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whole forest achieves an accurate and robust classification by averaging the class
distributions over the leaf nodes L(u) = {lt (u)}Tt=1 reached for all T trees:

p(c|u) = 1

T

∑

l∈L(u)

pl(c). (15.1)

Existing work has shown the power of decision forests as either classifiers
[36, 214] or a fast means of clustering descriptors [253]. In this chapter we show
how to simultaneously exploit both classification and clustering. Furthermore, we
generalize [253] to use the tree hierarchies as hierarchical clusters.

We use the standard randomized learning algorithm described in Chap. 4 to learn
binary forests. Each tree is trained separately on a small random subset S ′ ⊆ S of the
training data S (here we employ the bagging randomness model). We will denote
the weak learner decision function as

h(u; θ j ) = [
f (u;φj ) ≥ τj

]
(15.2)

which is governed by node-specific parameters θ j = (φj , τj ) consisting of offset pa-
rameters φ (see below) and a threshold τ . Learning proceeds as described in Chap. 4,
using the standard entropy-based information gain objective. The training continues
to a maximum depth D or until no further information gain is possible. The class
distributions pj (c) are estimated empirically as a histogram of the class labels c(u)

of the training examples u ∈ Sj that reached node j .
The amount of training data may be significantly biased towards certain classes

in some datasets. A classifier learned on these data will have a corresponding prior
preference for those classes. We weight each training example by the inverse class
frequency as w(u) = ξc(u) with ξc = (

∑
u∈S [c = c(u)])−1. This weight is applied to

each example when accumulating the histograms used to compute the information
gain. The classifiers trained using this weighting tend to give a better class average
accuracy.

Using ensembles of trees trained on only small random subsets of the data helps
to speed up training time and reduce over-fitting [5]. The trees are fast to learn and
extremely fast to evaluate since only a small portion of the tree is traversed for each
data point. After training, an improved estimate of the class distributions is obtained
using all pixels in the training data u ∈ S , not just the subset S ′. We found this to
improve the generalization of the classifiers slightly, especially for classes with few
training examples.

15.3 Semantic Texton Forests

Semantic texton forests (STFs) are a specific form of randomized decision forests
that can be used for both clustering and classification. The features f (u;φ) in STFs
act on small image patches centered at pixel u of size Δ × Δ pixels, as illustrated
in Fig. 15.2(a). The feature parameters φ denote one of the following functions:
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Fig. 15.2 (a) Semantic texton forests features. The split nodes in semantic texton forests use sim-
ple functions of raw image pixels within a Δ × Δ patch: either the raw value of a single pixel, or
the sum, difference, or absolute difference of a pair of pixels (red). (b) Semantic textons. A vi-
sualization of leaf nodes from one tree (distance Δ = 21 pixels). Each patch is the average of all
patches in the training images assigned to a particular leaf node l. We can observe distinct patterns
of color, horizontal, vertical, and diagonal edges, blobs, ridges, and corners. This visualization also
allows a simple image reconstruction; see Fig. 15.8. Note that also associated with each semantic
texton is a learned distribution pl(c) (not shown) which is used as the rough local segmentation of
Fig. 15.1(c)

(i) the value v(u + δ, b) of a single pixel at u + δ in color channel b; (ii) the sum
v(u + δ1, b1) + v(u + δ2, b2); (iii) the difference v(u + δ1, b1) − v(u + δ2, b2); or
(iv) the absolute difference |v(u + δ1, b1)− v(u + δ2, b2)|. Here, function v denotes
a look-up into the image pixel colors. The color channels b1 and b2 need not be the
same.

To textonize an image, the Δ × Δ patch centered at each pixel u is passed down
the STF resulting in semantic texton leaf nodes L = {lt }Tt=1 and the averaged class
distribution p(c|u). Examples are shown in Fig. 15.1 and Fig. 15.3(b). A pixel-level
classification based on the local distributions P(c|L) gives poor but still surprisingly
good accuracy (see Sect. 15.6.1). We will shortly describe in Sect. 15.3.3 how the
bag of semantic textons can pool the statistics of semantic textons L and distribu-
tions P(c|L) over an image region to form a much more powerful feature for image
categorization and semantic segmentation.

Examples of the appearance clusters learned in STFs are given in Fig. 15.2(b).

15.3.1 Learning Invariances

Although using raw pixels as features is much faster than first computing descrip-
tors or filter-bank responses, one risks losing their inherent invariances. To avoid
this loss, we augment the training data with image copies that are artificially trans-
formed geometrically and photometrically [214]. This augmentation allows one to
learn the right degree of invariance required by suitably designing these transforma-
tions for a particular problem. In our experiments we explored small rotations and
scalings, and left-right flipping as geometric transformations, and affine photometric
transformations.
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Fig. 15.3 Example semantic textonizations. (a) Test image. (b) One texton map per tree in the
STF. Colors represent tree leaf nodes. (c) Ground truth classification. (d) Inferred rough local seg-
mentation, showing the most likely class per pixel. Colors in (c) and (d) represent category labels.
Both the textons and the rough segmentation are used as features for whole image categorization
and higher-level segmentation. A further example is given in Fig. 15.1

15.3.2 Implementation Details

As discussed in Part I of this book, forests can be trained both in a supervised or
unsupervised manner. Similarly, an STF can be trained using (i) pixel-level supervi-
sion, (ii) weak supervision, in which the members of the set of classes present in the
whole image are used as training labels for all pixels, or (iii) no supervision, where
the split function that most evenly divides the data is used. In the unsupervised case,
the STF forest acts only as a hierarchical clusterer, not a classifier, similar to the
density forests of Chap. 6. We examine the effect of different levels of supervision
in Sect. 15.6.

We found the CIELab color space to generalize better than RGB, and it is used
in all experiments. Training example pixels are taken on a regular grid (every 5 × 5
pixels) in the training images, excluding a narrow band of Δ

2 pixels around the image
border to avoid artifacts; at test time, the image is extended to ensure a smooth
estimate of the semantic textons near the border.

15.3.3 Bags of Semantic Textons

A popular and powerful method for categorizing images and detecting objects is
the bag of words model [81, 348, 416]. A histogram of visual words is created
over the whole image or a region of interest [67], either discarding spatial layout
or using a spatial hierarchy [204]. The histogram is used as input to a classifier
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Fig. 15.4 Bags of semantic textons. Within a region F of image J we generate the semantic texton
histogram and region prior. The histogram incorporates the implicit hierarchy of clusters in the STF,
containing both STF leaf nodes (green) and split nodes (blue). The depth d of the nodes in the STF

is shown. The STFs need not be to full depth, and empty bins in the histogram are not shown as
the histogram is stored sparsely. The region prior is computed as the average of the individual leaf
node class distributions pl(c)

to recognize object categories. We propose the localized bag of semantic textons
(BoST), illustrated in Fig. 15.4. This extends the bag of words to be hierarchical and
to include low-level semantic information, as follows.

Given the leaf nodes L(u) = {lt }Tt=1 and the inferred class distribution p(c|u)

for each pixel u, one can compute the following over an image region F : (i) a
non-normalized histogram GF (j) that concatenates the occurrences of tree nodes j

across the different trees [253]; and (ii) a prior over the region given by the average
class distribution p(c|F) = ∑

u∈F p(c|u). In contrast to [253], we include both leaf
nodes l and split nodes j in the histogram, noting that GF (j) = ∑

j ′∈child(j) GF (j ′).
The histogram therefore uses the hierarchy of clusters implicit in each tree. Each
p(c|u) is already averaged across trees, and hence there is a single region prior
p(c|F) for the whole forest.

Our results in Sect. 15.6 show that the histograms and region priors are com-
plementary, and that the hierarchical clusters are better than the leaf node clusters
alone. For categorization (Sect. 15.4), we use BoSTs where the region is the whole
image. For segmentation (Sect. 15.5), we use a combination of BoSTs over many
local rectangular regions to model layout and context.

Implementation Details The counts of tree root nodes hold no useful information
and are not included in the histograms. The histograms are sparse near the leaves,
and can be stored efficiently since the histogram counts at the parent split node
can be quickly computed on-the-fly. If the region F is rectangular, the histograms
and class distributions can be calculated very efficiently using integral histograms
[295, 342].

15.4 Image Categorization

The task of image categorization is to determine those categories (e.g. dog images,
beach images, indoor images) to which an image belongs. For our purposes, every
image belongs to those categories for which there exists a pixel in the image that has
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been labeled with that category. Thus, an image with a sheep eating grass will belong
to both the ‘grass’ and ‘sheep’ categories. Example previous approaches have used
global image information [276], bags of words [104] or textons [404].

We propose an image categorization algorithm that exploits the hierarchy of se-
mantic textons and the node prior distributions pj (c). This algorithm uses a non-
linear support vector machine (SVM), though of course decision forests could also
be used instead. The SVM depends on a kernel function K that defines the simi-
larity measure between images. To take advantage of the hierarchy in the STF, we
adapt the pyramid match kernel [141] to act on a pair of BoST histograms computed
across the whole image.

Consider first the BoST histogram computed for just one tree in the STF. The
kernel function (based on [141]) is then

K(P,Q) = 1√
Z

K̃(P,Q), (15.3)

where Z is a normalization term for images of different sizes computed as

Z = K̃(P,P )K̃(Q,Q). (15.4)

Here, K̃ is the actual matching function, computed over levels of the tree as

K̃(P,Q) =
D∑

d=1

1

2D−d+1
(Gd − Gd+1), (15.5)

using the histogram intersection G

Gd =
∑

j

min
(
Pd [j ],Qd [j ]). (15.6)

In the above, D is the maximum depth of the tree, P and Q are the hierarchical
histograms, and Pd and Qd are the portions of the histograms at depth d , with
j indexing over all nodes at depth d . There are no nodes at depth D + 1, hence
GD+1 = 0. If the tree is not full depth, missing nodes j are simply assigned Pd [j ] =
Qd [j ] = 0.

The kernel over all trees in the STF is calculated as K = ∑
t γtKt with mixture

weights γt . Similarly to [416], we found γt = 1
T

to result in the best categorization
results. While effective, this kernel can be improved by using the learned ‘prior’
distributions pj (c) from the STF. We build a 1-vs.-all SVM kernel Kc per category,
in which the count for node j in the BoST histogram is weighted by the value pj (c).1

This weighting helps balance the categories, by selectively down-weighting those
that cover large image areas (e.g. grass, water) and thus have inappropriately strong

1At training time, we compute and store the distributions pj (c) for all nodes j in the tree, not just
for leaf nodes.
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influence on the pyramid match, masking the signal of smaller classes (e.g. cat,
bird).

In Sect. 15.6.2, we show the improvement that the pyramid match kernel on the
hierarchy of semantic textons gives over a radial basis function on histograms of
just leaf nodes. We also obtain an improvement using the per-category kernels Kc

instead of a global kernel K . Finally, we show how this categorization can act as an
image-level prior for segmentation in Sect. 15.5.1.

15.5 Semantic Segmentation

To demonstrate the power of the BoSTs as features for segmentation, we adapt the
TextonBoost algorithm [342]. The goal is to segment an image into coherent regions
and simultaneously infer the class label of each region (see Sect. 15.6.3.1).

Appearance Context vs. Semantic Context In [342], a boosting algorithm se-
lected features based on localized counts of textons to model patterns of texture,
layout, and context. The context modeled in [342] was appearance-based, for exam-
ple: sheep often stand on something green. We adapt the rectangle count features of
[342] to act on both the semantic texton histograms and the BoST region priors. The
addition of region priors allows us to model context based on semantics [303], not
just texture. Continuing the example, our model can capture the notion that sheep
often stand on grass. This concept of basing the output of one classifier as the input
to another was proposed concurrently by [341] (the original version of this chapter)
and [375]. The related idea of entanglement is explored in Chap. 19.

The segmentation algorithm works as follows. For speed we use a second classi-
fication forest in place of the boosting classifier used by [342]. We train this forest
to act at image pixels u, using pixels on a regular grid as training examples. At test
time, the segmentation forest is applied at each pixel u densely or, for more speed,
on a grid. The most likely class in the averaged category distribution (15.1) gives the
final segmentation for each pixel. The split node functions f now compute either
the count GF+u(j) of semantic texton j , or the probability p(c | F + u) of class c,
within rectangle F translated relative to pixel u. By translating rectangle F relative
to the pixel u being classified, and uniformly sampling rectangles F within a box
offset from u by up to half the image size, such features can exploit texture, layout
and context information (see [342] for more details). Our extension to these features
exploits semantic context by using the region prior probabilities p(c|F +u) inferred
by the semantic textons. We show the benefit this brings in Sect. 15.6.3.

15.5.1 Image-Level Prior

We could embed the above segmentation forest in a conditional random field model
to achieve more coherent results or to refine the grid segmentation to a per-pixel
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segmentation [157, 342]. Instead, we decided to investigate a simpler and more ef-
ficient approach using the image categorizer we built in Sect. 15.4. For each test
image we separately run the categorization and segmentation algorithms. This gives
an image-level prior (ILP) distribution p(c) and a per-pixel segmentation distribu-
tion p(c|u) respectively. We use the ILP to emphasize the likely categories and
discourage unlikely categories, by multiplying the somewhat independent distribu-
tions as p′(c|u) = p(c|u)p(c)α , using parameter α to soften the prior. We show in
Sect. 15.6.3 and Sect. 15.6.3.1 how the addition of the ILP gives a considerable im-
provement to the resulting segmentations. Li and Fei-Fei [219] proposed a related
idea that uses scene categorization as priors for object detection.

15.6 Experiments

We performed experiments on the following two datasets:

# classes # training images # test images

MSRC [342] 21 276 256
VOC 2007 (Seg) [99] 21 422 210

We use the standard train/test splits where available, and the hand-labeled ground
truth to train the classifiers. Image categorization accuracy is measured as mean
average precision [99]. Segmentation accuracy is measured as the category average
accuracy (the average proportion of pixels correct in each category). We also report
the global accuracy (total proportion of pixels correct), but note that the category
average is fairer and more rigorous as it normalizes for category bias in the test set.
Training and test times are reported using an unoptimized C# implementation on a
single 2.7 GHz core.

15.6.1 Learning the Semantic Texton Forest Vocabulary

Before presenting in-depth results for categorization and segmentation, let us look
briefly at the STFs themselves. In Figs. 15.1 and 15.3 we visualize the inferred leaf
nodes L(u) for each pixel u and the most likely category c�(u) = arg maxc p(c|u).
Observe that the textons in each tree capture different aspects of the underlying tex-
ture and that even at such a low level the distribution p(c|u) contains significant
semantic information. Table 15.1 gives a naïve segmentation baseline on the MSRC
dataset by comparing c�(u) to the ground truth, with either fully or weakly super-
vised training pixels (see Sect. 15.3.2).

Clearly, this segmentation is poor, especially when trained in a weakly super-
vised manner, since only very local appearance (and no context) is used. Even so,
the signal is remarkably strong for such simple features (random chance is un-



15 Semantic Texton Forests 221

Table 15.1 Naïve
segmentation baseline
on MSRC

Global Average

supervised 49.7 % 34.5 %

weakly supervised 14.8 % 24.1 %

Table 15.2 Image
categorization results.
(Mean AP)

Global kernel K Per-category kernel Kc

RBF 49.9 52.5

PMK 76.3 78.3

der 5 %). We show below how using semantic textons as features in higher-level
classifiers greatly improves these numbers, even with weakly supervised or unsu-
pervised STFs.

Except where otherwise stated, we used STFs with the following parameters,
hand-optimized on the MSRC validation set: distance Δ = 21, T = 5 trees, max-
imum depth D = 10, 500 feature tests and 10 threshold tests per split node, and
bagging using 1

4 of the data per tree, resulting in approximately 500 leaves per tree.
Training the STF on the MSRC dataset took only 15 minutes.

15.6.2 Image Categorization

We performed an experiment on the MSRC data to investigate our SVM catego-
rization algorithm. The mean average precisions (AP) in Table 15.2 compare our
modified pyramid match kernel (PMK) to a radial basis function (RBF) kernel, and
compare the global kernel K to the per-category kernels Kc . In the baseline results
with the RBF kernel, only the leaf nodes of the STF are used, separately per tree, us-
ing term frequency/inverse document (‘tf/idf’, from standard information retrieval)
frequency to normalize the histogram. The PMK results use the entire BoST which
for the per-category kernels Kc are weighted by the prior node distributions pj (c).
As can be seen, the pyramid match kernel considerably improves on the RBF kernel.
By training a per-category kernel, a small but noticeable improvement is obtained.
For the image-level prior for segmentation, we thus use the PMK with per-category
kernels. In Fig. 15.5 we plot the global kernel accuracy against the number T of
STF trees, and see that categorization accuracy increases with more trees though it
eventually levels out.
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Fig. 15.5 Categorization
accuracy vs. number of STF

trees

Further categorization experiments are provided in Tables 15.3 and 15.4.

15.6.3 Semantic Segmentation

15.6.3.1 Experiments on the MSRC Dataset [342]

We first examine the influence of different aspects of our system on segmentation
accuracy. We trained segmentation forests using (a) the histogram GF (l) of just
leaf nodes l; (b) the histogram GF (j) of all tree nodes j ; (c) just the region pri-
ors p(c|F); (d) the full model using all nodes and region priors; (e) the full model
trained without random geometric/photometric transformations; (f) all nodes us-
ing an unsupervised STF (no region priors are available); and (g) all nodes using
a weakly supervised STF (only image labels). The category average accuracies are
given in Table 15.5 with and without the image-level prior (ILP).

There are several conclusions to draw. (1) In all cases the ILP improves results.
(2) The hierarchy of clusters in the STF gives a noticeable improvement. (3) The
region priors alone perform remarkably well. Comparing to the segmentation result
using only the STF leaf distributions (34.5 %) this shows the power of the local-
ized BoSTs that exploit semantic context. (4) Each aspect of the BoST adds to the
model. While, without the ILP, score (b) is slightly better than the full model (d),

Table 15.3 MSRC categorization results. The values shown are the average precision (AP) and
the area under the ROC curve (AuC) for the MSRC21 dataset
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Table 15.4 VOC2007 categorization results. The values shown are the average precision (AP) and
the area under the ROC curve (AuC) for the VOC2007 segmentation dataset
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Table 15.5 Comparative
segmentation results on
MSRC

Without ILP With ILP

(a) only leaves 61.3 % 64.1 %

(b) all nodes 63.5 % 65.5 %

(c) only region priors 62.1 % 66.1 %

(d) full model 63.4 % 66.9 %

(e) no transformations 60.4 % 64.4 %

(f) unsupervised STF 59.5 % 64.2 %

(g) weakly supervised STF 61.6 % 64.6 %

adding in the ILP shows how the region priors and textons work together.2 (5) Ran-
dom transformations of the training images improve accuracy by adding invariance.
(6) Accuracy increases with more supervision, but even unsupervised STFs allow
good segmentations.

Given this insight, we compare against [342] and [384]. We use the same
train/test split as [342] (though not [384]). The results are summarized in Fig. 15.6
with further examples given in Fig. 15.9. Across the whole challenging dataset,
using the full model with ILP achieved a class average accuracy of 66.9 %, a
considerable improvement on both the 57.7 % of [342] and the 64 % of [384].
The global accuracy also improves slightly on [342]. The image-level prior im-
proves accuracy for all but three classes, but even without it, results are still highly
competitive with respect to other methods. Our use of balanced training has re-
sulted in more consistent accuracy across classes, and significant improvements
for certain difficult classes: cow, sheep, bird, chair, and cat. We do not use a
Markov or conditional random field, which would likely further improve our ac-
curacy [342].

These results used our learned and extremely fast STFs, without needing any
hand-designed filter-banks or descriptors that are potentially slow to compute. Ex-
tracting the semantic textons at every pixel takes an average of only 275 millisec-

2This effect may be due to segmentation forest (b) being over-confident: looking at the five most
likely classes inferred for each pixel, (b) achieves 87.6 % while (d) achieves a better 88.0 %.
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Fig. 15.6 MSRC segmentation results. Above: Segmentations on test images using semantic tex-
ton forests. Note how the good but somewhat noisy segmentations are cleaned up using our im-
age-level prior (ILP) that emphasizes the categories likely to be present. Further examples, includ-
ing failure cases, in Fig. 15.9. (Note we do not use a Markov or conditional random field which
could clean up the segmentations to precisely follow image edges [342]). Below: Segmentation ac-
curacies (percent) over the whole dataset, without and with the ILP. Our highly efficient semantic
textons achieve a significant improvement on previous work

onds per image, categorization takes 190 ms, and evaluating the segmentation forest
only 140 ms. For comparison [342] took over 6 seconds per test image, and [384]
took an average of over 2 seconds per image for feature extraction and between 0.3
to 2 seconds for estimating the segmentation. Our algorithm is well over 5 times
faster and improves quantitative results. Minor optimizations have subsequently led
to a real-time system that runs at over 8 frames per second.

15.6.3.2 Experiments on the VOC 2007 Segmentation Dataset [99]

This dataset contains 21 challenging categories including background. We trained a
STF, a segmentation forest, and an ILP on these data, using the ‘trainval’ split and
keeping parameters as for MSRC. The results in Fig. 15.7 compare with [99]. Our
algorithm performs over twice as well as the only segmentation entry (Brookes),
and the addition of the ILP further improves accuracy by 4 %. The actual winner
of the segmentation challenge, the TKK algorithm, used segmentation by detection
that fills in the detected object bounding boxes by category. To see if our algorithm
could use a detection-level prior DLP (identical to the ILP but using the detected
bounding boxes and varying with image position) we took the TKK entry output as
the DLP. Our algorithm gave a 12 % improvement over the TKK segmentation by
detection, highlighting the power of STFs as features for segmentation.
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Fig. 15.7 VOC 2007 segmentation results. Above: Test images with ground truth and our inferred
segmentations using the ILP (not the DLP). Below: Segmentation accuracies (percent) over the
whole dataset. The top three results compare our method to the Brookes segmentation entry [99],
and show that our method is over twice as accurate. The lower two results compare the best auto-
matic segmentation-by-detection entry (see text) [99] with our algorithm using the TKK results as
a detection-level prior (DLP). Our algorithm improves the accuracy of segmentation by detection
by over 10 percentage points

Fig. 15.8 Reconstruction from texton maps. By simply averaging the patches in Fig. 15.2(b) ac-
cording to the texton maps in Fig. 15.3 one gets a blurry reconstruction of the original images.
These reconstructions show that our semantic textons discretely capture significant image texture

Since the original publication of this work [341], there has been considerable
progress in the field. Please see the latest PASCAL VOC challenge for the state of
the art.
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Fig. 15.9 A random selection of results on the MSRC dataset, including successes and failures.
Left: Test image. Middle: Ground truth. Right: Our result. Image-level prior is used. Black pixels
in the ground truth are ‘void’ and not used for evaluation
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15.7 Conclusions

This chapter presented semantic texton forests as an efficient method for encoding
textons. STFs do not depend on local descriptors or expensive k-means clustering,
and when supervised during training they can infer a distribution over categories at
each pixel. We showed how bags of semantic textons enabled state-of-the-art accu-
racy on challenging datasets for image categorization and semantic segmentation,
and how the use of an inferred image-level prior significantly improves segmenta-
tion results. The substantial gains of our method over traditional textons are training
and testing efficiency and improved quantitative performance.

The main limitation of our system is the large dimensionality of the bag of se-
mantic textons, which necessitates a trade-off between the memory usage of the
semantic texton integral images and the training time if they are computed at run-
time. However, using just the region priors is more memory efficient.

As future work, it would be interesting to investigate how STFs might be used for
image reconstruction. A few examples of a simple experiment are given in Fig. 15.8.

Acknowledgements We would like to thank J. Winn, B. Wenger, O. Yamaguchi, and V. Vi-
itaniemi for helpful conversations and insights contributing to the work in this paper.



Chapter 16
Semi-supervised Video Segmentation Using
Decision Forests

V. Badrinarayanan, I. Budvytis, and R. Cipolla

We present a novel semi-supervised video segmentation algorithm which delivers
pixel labels along with their uncertainty estimates. The underlying probabilistic
model is a temporal tree-structured Markov Random Field. Our algorithm takes as
input user labeled key frame(s) of a video sequence. We then infer the marginal class
posteriors of the unlabeled pixels. These posteriors are used to learn pixel unaries by
training a decision forest in a semi-supervised manner. We term this the soft label
Random Forest (slRF), in which the pixel posterior is treated as its vector label at
training time. This allows us to use the standard Shannon entropy-based information
gain as objective function, in an iterative, self-training semi-supervised framework.
This is in contrast to the transductive forest of Chap. 8 which uses separate entropy
measures for labeled and unlabeled data, respectively. We demonstrate the efficacy
of our approach in foreground/background segmentation problems, based on quan-
titative studies on the challenging SegTrack dataset. We envisage our results to have
wide applicability, including harvesting labeled video data for several applications
such as action recognition, shape learning and developing priors for video segmen-
tation.

16.1 Introduction

Semi-supervised video segmentation has a number of interesting applications, in-
cluding video editing, harvesting labeled video data for training classifiers and learn-
ing shape and actions [203], as well as developing priors for unsupervised video
segmentation [359]. In the past, several heuristic systems for semi-automatic video
segmentation have been proposed [14, 220] which process a few frames at each
step. But unlike semi-supervised image segmentation [315, 386], rigorous video
modeling and inference for semi-supervised video segmentation have rarely been
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explored. This can perhaps be attributed to high cost of inference and limited avail-
ability of computational power. In this work, we propose a probabilistic graphical
model and an efficient inference method dedicated to semi-supervised video seg-
mentation. Closely associated with the inference strategy is the learning of class
unaries for segmentation using classification forests. In particular, we exploit the
flexibility of training forests with soft or probabilistic labels, i.e. using pixel poste-
riors as labels at training time. This allows us to use both labeled and unlabeled data
to learn class likelihoods in a seamless fashion for foreground/background video
object segmentation problems. The additional advantage in using random forests is
the low training and testing time.

Recently, unsupervised video segmentation has gained much attention [207, 215,
382], especially as extensions of image super-pixelization to space-time super-
pixels. The aim of these methods is to group pixels which are photometrically
and motion-wise consistent. In simple cases, where there is a clear distinction be-
tween foreground and background, the grouping may appear to be semantically
meaningful. However, in more complex videos, the result is, in general, an over-
segmentation, and requires additional knowledge (through user interaction for ex-
ample) to achieve any object level segmentation. In contrast, in this work, we de-
velop a probabilistic framework which jointly models both appearance and semantic
labels, with a view to perform semi-supervised video segmentation. A second dis-
tinction of our algorithm is that it performs probabilistic inference, as opposed to
the more commonly used point-wise maximum a posteriori (MAP) inference. This
is to enable semi-supervised learning of pixel unaries (class likelihoods), for a given
video sequence, from both labeled and unlabeled data. These unaries are then used
to further improve the quality of segmentation.

One or two notable instances [38, 188] have tried to extend their image segmen-
tation algorithms directly for n-D sequences/videos, though have met only limited
success. A few others [103, 373] have tackled the problem of joint tracking and
segmentation using unaries learnt at the start frame. We demonstrate via quantita-
tive studies on such problems that our algorithm can achieve better or comparative
results without using heuristics such as fixing the labels at each frame successively.

In this work, the semantic objects of interest are defined by the user labeled key
frame(s) of the video sequence (see Fig. 16.2). It is also possible to input only a few
user mouse strokes in some frames. Our proposed segmentation algorithm uses this
input to label each pixel in the video data into one of the user defined categories
and infers their confidence estimates. The resulting soft labels can then be used for
learning pixel unaries using a classification forest [44] in a semi-supervised manner
to further improve the segmentation (see Sect. 16.3.3 for details).

As we perform probabilistic inference as opposed to MAP inference, a family of
labelings at various confidence levels are available to the user as output. The user
can then select one of these labelings at one or more frames, fix or clamp them, and
re-infer the labeling over the whole video. This is similar to the self-training flavor
of semi-supervised learning [103], as opposed to transductive learning of Chap. 8.
Probabilistic inference is also an important component for active learning methods
[103, 330, 407, 424].
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To summarize, we make the following contributions:

1. A patch-based probabilistic graphical model for semi-supervised video segmen-
tation, which employs a novel temporal tree structure to link patches between
frames.

2. An efficient structured variational inference scheme which infers pixel-wise la-
bels and their confidences.

3. The use of decision forests, trained in a semi-supervised manner, to incorporate
both labeled and unlabeled data to learn pixel unaries for segmentation.

16.2 Literature Review

We review some of the related state of the art in unsupervised, classification based,
semi-supervised and work-flow-based video segmentation.

16.2.1 Unsupervised Video Segmentation

The rectangular patch-based Epitome model [63, 174] and the pixel-based Jigsaw
model [179] learn a compact latent representation of an image or a sequence of im-
ages. For a video sequence, this translates to learning correlations between pixels
in both successive and non-successive frames. However, there is a model selection
step (number of clusters, size of Epitomes or Jigsaws) which is usually hand-crafted.
In our proposed algorithm, we employ an epitomic model to learn correlations be-
tween successive frames which circumvents the aperture problem afflicting optical
flow. However, we avoid costly learning of compact latent representations for the
video to establish correlations between non-successive frames, and instead choose
a simpler alternative in the form of a decision forest [44] to achieve the same goal.

Video super-pixelization methods such as [49, 146, 207, 215, 382] rely on group-
ing pixels in space and time using appearance and motion cues. Unfortunately, of-
ten this results in over fragmentation, and pixel clusters which cannot be easily
interpreted as semantically meaningful regions. However, consistent video super-
pixelization can reduce the input dimension for structured discriminative models.

16.2.2 Classification-Based Segmentation

We broadly divide methods in this category into unstructured and structured classi-
fication methods.
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Unstructured Classification Unstructured classifiers predict class labels inde-
pendently for each pixel without incorporating any neighborhood constraints. Deci-
sion forests [44], an example of unstructured classifiers, have recently gained pop-
ularity in image and video segmentation [48, 53, 341, 343]. In this work, we train a
decision forest in a semi-supervised manner to learn pixel unaries and demonstrate
that this learning can often help improve the quality of video segmentation.

Structured Classification Structured classifiers incorporate neighborhood con-
straints, such as spatial or temporal smoothness, to perform pixel class prediction.
Conditional random field (CRF) models [38, 196] are an example of widely applied
structured classifiers which have led the way in image segmentation problems. In
practice, their main attraction arises from the ability to perform global optimization
or in finding a strong local minimum of a particular class (sub-modular) of CRFs
at interactive speeds [39]. There are one or two notable instances which have tried
to extend their image segmentation algorithms directly for videos by propagating
MAP estimates sequentially [188] or for N-D sequences [38]. As pointed out by
[14], performing MAP inference on large 3D volumes results in an uncontrollable
work flow. Multi label MAP inference on the full video volume is extremely expen-
sive [373]. More recent work has concentrated on using random forests to learn the
potentials of CRF models as opposed to hand setting them [271]. The use of forests
for structured labeling tasks has also been explored in [192].

16.2.3 Semi-supervised Video Segmentation

In our earlier work [13], we jointly modeled appearance and semantic labels using a
coupled-HMM model. The key idea was to influence the learning of frame to frame
patch correlations as a function of both appearance and class labels. We extended
this method in [53] to include correlations between non-successive frames using
a classification forest. In this new chapter, we follow these in jointly modeling ap-
pearance and semantic labels. The significant difference is that we use an undirected
model which lends itself more naturally to fusion of classifiers and temporal model-
ing. In contrast, the directed models in our earlier work introduced competition (the
‘explaining away’ effect [164]) between classifiers and temporal models, which is
not always desirable.

Tsai et al. [373] jointly optimize for temporal motion and semantic labels in an
energy minimization framework. In this interesting framework, a sliding window
approach is used to process overlapping n-frame grids for the sake of reducing com-
putational burden. The result of one n-frame grid is employed as a hard constraint
in the next grid and so on. Such an approach is also used in [397]. In contrast, we
treat the whole video volume at once, inferring both temporal correlations and label
uncertainties. Fathi et al. [103] use semi-supervised and active learning for video
segmentation. Each unlabeled pixel is provided a confidence measure based on its
distance in a neighborhood graph to a labeled point. These confidences are used to
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recommend frames in which more interaction is desired. In our approach, inference
directly leads to confidences and active learning can also be pursued.

16.2.4 Work-Flow-Based Video Segmentation

The VideoSnapCut algorithm of [14] is an example of a work-flow-based system
which relies on a heuristic combination of low level cues for video segmentation.
This technique is motivated by the fact that methods based on global optimization
[220] often results in an uncontrollable work flow. To avoid this issue, they employ
spatially local classifiers and propagate their predictions over time using optical
flow. The main drawbacks are the heuristic nature of cue integration, use of unreli-
able flow measurements and small time window processing.

16.3 Video Model for Semi-supervised Segmentation

We introduce a patch-based undirected graphical model for semi-supervised video
segmentation which jointly models both the observed sequence of images (appear-
ance layer) and their corresponding labels (label layer). See Fig. 16.1(d) for an il-
lustration. In conjunction with this generative model for the video time-series we
also introduce the soft label Random Forest (slRF). The slRF is trained in a semi-
supervised manner using both labeled and unlabeled video data and its predictions
are used as class unaries. The learnt unaries are particularly useful when the fore-
ground object undergoes fast motion and self-occlusion is present.

Our segmentation method has three steps. First, is to perform label inference
using the generative video time-series model and with the unaries set to uniform
distribution. Second, is to use the inferred labels to learn class unaries by training a
random forest in a semi-supervised manner. Finally, in the third step these unaries
are injected back in a second iteration of label inference to improve the overall seg-
mentation quality. The model construction and label inference scheme are described
below.

16.3.1 Model Construction

Figure 16.1 illustrates a step-by-step construction of our model. We begin with the
image epitome [174], a compact version of the image with no spatial structure, as
shown in Fig. 16.1(a). In this image generative model, the original frame/image
Jk is assumed to be given as a set of patches Zk = {Zk,m}Mm=1, each containing
pixels from a subset of image coordinates Ck,m. The patches are taken to be square
in shape and it is assumed that their coordinate sets can overlap. For each patch, a
latent variable Sk,m maps coordinates Ck,m to coordinates in the epitome e. A square
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Fig. 16.1 Step-wise build up of our proposed model for semi-supervised video segmentation. In
(a) we show the underlying graphical model for the epitomic generative model of a frame Jk . In
(b) we replace the epitome of frame Jk by the previous frame in the image sequence. This avoids
the computationally expensive learning of the epitome. In (c) we extend (b) to jointly model both
frame appearance and corresponding labels. We show in (d) the full generative model for the entire
video sequence obtained by repeating the basic model in (c) over time. For a single instance of the
mapping variables S1:n we obtain a temporal tree structure as shown in (e). We use the term tree
structure to denote the undirected acyclic graphical model. The tree is rarely a spanning tree and
most often is a forest of sub-trees as shown in (e). Note that for clarity we do not show connections
for all the nodes in (e)

patch is mapped to a square patch in the epitome through Sk,m. At pixel coordinate
n in the epitome, a mean and variance μn,φn is stored. Given e = (μ,φ), the patch
Zk,m is obtained by copying the epitome mean and adding Gaussian noise to a level
prescribed by the variance map:

p(Zk,m|e, Sk,m) =
∏

i∈Ck,m

N (zk,m,i;μSk,m(i), φSk,m(i)). (16.1)

Note that coordinate i is defined on the input image Jk and zk,m,i is the intensity
or color of pixel i in patch m. In practice, the number of possible mappings Sk,m is
restricted to coordinates within a rectangular window centered around patch m in
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the epitome (like when patch cross-correlation is performed). So the prior over Sk,m

is set to uniform over the corresponding window.
Treating the patches to be independent, the generative model for the set of patches

is as follows:

p
({Zk,m}Mm=1, e, {Sk,m}Mm=1

)

= p(e)
∏

m=1:M
p(Sk,m)

∏

i∈Ck,m

N (zk,m,i;μSk,m(i), φSk,m(i)). (16.2)

The prior on the patch mapping variables is usually assumed flat. From this patch
generative model, the image generation is defined using patch averaging as follows:

p
(
Jk,i |{Zk,m}Mm=1

) =N
(

Jk,i; 1

Nk,i

∑

m,i∈Ck,m

zk,m,i;ψk,i

)
, (16.3)

where Nk,i is the number of patches which overlap pixel i. Therefore, the entire
epitome model is

p
(
Jk, {Zk,m,Sk,m}Mm=1, e

) = p
({Zk,m,Sk,m}Mm=1, e

)∏

i

p
(
Jk,i |{Zk,m}Mm=1

)
.

(16.4)

So far in this model, the patches {Zk,m}Mm=1 have been treated independently, even
though their coordinates overlap, for the sake of tractable inference. This is un-
realistic, and therefore during inference of the latent patches, the solution space is
constrained to those in which overlapping coordinates share the same intensity. This
is ensured by estimating a single point posterior distribution at each coordinate. We
discuss this part in Sect. 16.3.2.

Learning an epitome is computationally expensive and the quality of the gener-
ated image depends strongly on the size of the epitome. These problems are more
severe with video epitomes [63]. Therefore, we avoid learning epitomes and sub-
stitute frame Jk−1 as an epitome for Jk (see Fig. 16.1(b)). The similarity between
frames Jk and Jk−1 makes Jk−1 a natural source of patches used to generate Jk .
With these changes, (16.2) is transformed to

p
({Zk,m}Mm=1, Jk−1, {Sk,m}Mm=1

) = p(Jk−1)
∏

m=1:M
p(Sk,m)

×
∏

i∈Ck,m

N (zk,m,i;Jk−1,Sk,m(i), φSk,m(i)).

(16.5)

Latent variable Za
k in the label layer is the counterpart of latent variable Zk in the

appearance layer (see Fig. 16.1(c)). Za
k = {Za

k,m}Mm=1 is seen as a set of labeled
patches, each containing labeled pixels from a subset of image coordinates Ck,m.
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The common mapping variable Sk,j maps coordinates Ck,m to coordinates (patches)
in Za

k−1. The clique is then defined as

Ψ
(
Za

k,m,Za
k−1,Sk,m

;λ) =
∏

i∈Ck,m

Ψ
(
Za

k,m,i ,Z
a
k−1,Sk,m(i);λ

)
, (16.6)

where

Ψ
(
Za

k,m,i = l,Za
k−1,Sk,m(i) = v;λ) =

{
λ if l = v,

1 − λ otherwise,
(16.7)

and l, v ∈ L, with L denoting the label set. Notice that in this layer again we have
avoided the issue of overlapping coordinates as in the appearance layer for sake
of tractable inference. However, unlike the appearance layer, we do not explicitly
enforce overlapping coordinates to share the same label by computing a single
point posterior. This is because we wish to evaluate the full posterior distribution
to estimate label confidences at each image coordinate. Therefore, we average the
marginal posteriors of the latent variables which share the same coordinate (see
Sect. 16.3.2) and consider this average distribution as the label posterior at that co-
ordinate.

The entire time-series model for the video sequence is now obtained by extend-
ing the basic model in Fig. 16.1(c). This is shown in Fig. 16.1(d). In this model, for
any single state of the mapping variables Sk = {Sk,m}Mm=1, the label layer patches
are connected in a tree structure as shown in Fig. 16.1(e). Therefore, the time-
series model is a mixture of trees graphical model. In this work, we approximate
this mixture by its most probable component to arrive at a tree-structured graph-
ical model for video sequences (see Sect. 16.3.2). Note that this temporally tree-
structured model must not be confused with the decision trees which are also used
in this work to learn the class unaries.

The full probabilistic joint appearance and label model for video sequences is as
given here:

p
(
J0:n,Z1:n,Za

0:n, S1:n|ψ,φ,λ
) ∝

∏

k=1:n
p(Jk|Zk;ψ)p(Zk|Sk, Jk−1;φ)

× Ψ
(
Za

k ,Za
k−1,Sk

;λ)
Ψu

(
Za

k

)
Ψu

(
Za

0

)
p(Sk),

(16.8)

with Eqs. (16.3), (16.5), and (16.6) defining the first three terms of the right hand
side. The unary terms are defined as follows:

Ψu

(
Za

k

) =
∏

m=1:M

∏

i∈Ck,m

Ψu

(
Za

k,m,i

)
. (16.9)

The prior on the mapping variable p(Sk,m) is set to a uniform distribution within a
rectangular window in frame k − 1 around the center coordinate of patch Zk,m.
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16.3.2 Inference

It is clear from (16.8) that the proportionality constant cannot be computed due
to the combinatorial sum involved on the right hand side. Therefore, we resort to
approximate inference as discussed below. The log probability of the observed data
V (images, labeled start frame) can be lower bounded as follows:

logp
(
V |Υ = {ψ,φ,λ}) ≥

∫

Ξ

q(Ξ) log
p(V,Ξ |Υ )

q(Ξ)
, (16.10)

where q(Ξ) is a variational posterior over the latent variables in the model. We
choose

q(Ξ) = q1(S)q2(Θ), (16.11)

where Θ = {Z1:n,Za
1:n}, S = S1:n, and

q1(S) �
n∏

k=1

M∏

m=1

q1(Sk,m),

q2(Θ) �
n∏

k=1

M∏

m=1

∏

i∈m

δZ∗
k,m,i

(Zk,m,i)q̃2(Θ\Z1:n).

(16.12)

Notice from the above equation that the variational posterior does not factorize into
independent terms (over the latent variables Θ) as in a mean-field approximation
[28]. Therefore, our approximation is a structured variational posterior, which leads
to better approximate inference [319]. Secondly, notice the single point posterior ap-
proximation over the latent variables Z1:n. This ensures that overlapped coordinates
have the same value.

We now apply the calculus of variations [28] to maximize the lower bound w.r.t.
q1, q2 and arrive at

q1(Sk,m) ∝ exp

{∫

Zk,m,Za
k,m,Za

k−1,Sk,m

q̃2
(
Za

k,m,Za
k−1,Sk,m

)

× log
[
Ψ

(
Z∗

k,m, Jk−1,Sk,m
;φ)

Ψ
(
Za

k,m,Za
k−1,Sk,m

;λ)]}
p(Sk,m),

(16.13)

q̃2(Θ\Z1:n) = exp
∫

S
q1(S) logp(Θ\Z1:n |V,S;Υ ). (16.14)

The second of the above fixed point equations is computationally intensive as it
involves marginalizing over all the mapping variables. For this reason, we approxi-
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mate it by

q̃2(Θ\Z1:n) ≈ exp
∫

S
δS∗(S) logp(Θ\Z1:n |V,S;Υ ),

= p
(
Θ\Z1:n |V,S∗;Υ )

, (16.15)

where S∗ = arg maxS q1(S). A second motivation for this approximation is that
p(Θ\Z1:n |V,S∗;Υ ) is temporally tree structured. From a variational inference
viewpoint, T ∗ represents the best (MAP) tree-structured component of the mix-
ture model. We exploit this temporal tree structure to perform efficient and exact
inference of the latent variables in the set Θ\Z1:n . Notice that q̃2(Θ\Z1:n) is a joint
distribution over the MAP tree and thus the exact marginal posteriors are easily
computed using standard sum-product belief propagation [28].

We also emphasize that the tree structure need not be a spanning tree. Indeed,
we employ the term tree structured to mean an undirected acyclic graph on which
exact inference can be performed. In practice, there can be several disjoint trees in
the model or a forest of non-spanning trees (see Fig. 16.1).

16.3.2.1 From Patches to Pixel Posteriors

So far in the inference, we have exploited the best tree structure to compute the
marginal posteriors of variables za

k,m,i , where i is the image coordinate. As men-
tioned in Sect. 16.3.1, since patches share coordinates (overlap), we average the
marginal posteriors of all latent variables which share the same coordinate. For ex-
ample

q̂2
(
za
k,i

) ≈ 1

Nk,i

∑

m,i∈Ck,m

q̃2
(
za
k,m,i

)
, (16.16)

where q̂2(z
a
k,i ) is the averaged posterior. Notice that the patch index is now removed

on the left hand side.

16.3.2.2 Forward and Backward Trees

From Fig. 16.1(e), we see that the tree has its root in the start frame and leaves at the
end frame. We denote this as the forward tree. This directionality in the temporal
structure can sometimes lead to a labeling bias. For example, the user provided root
frame labels can have a stronger influence than the leaf (end) frame labels on the
remaining latent variables. To correct for this bias, we compute the best tree in the
reverse direction (backward tree with root at the end frame) and perform inference
on it. Finally, we average the label posteriors from the two trees, at each coordinate,
to obtain the approximate posterior at each pixel.
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Algorithm 16.1 Semi-supervised video segmentation using decision forests
Input: J0:n (video) and hand labeled key frame(s)
Output: Pixel label probabilities

Initialization
Set Za

0 to user provided labels and Z∗
k = Jk , k ∈ 1 : n

Set the initial values of λ,ψ,φ to the values given in Sect. 16.4
Set the pixel unaries to uniform distributions
Set the prior on the mapping variables to uniform distributions

Inference
1. Compute the forward and backward trees using (16.13) (Sect. 16.3.2.2)
2. For each tree separately:
– a. Perform exact inference to obtain pixel marginals (Sect. 16.3.2)
– b. Obtain the coordinate-wise approximate marginals by averaging

(Sect. 16.3.2.3)
3. Optionally smooth the pixel labels in each frame using loopy BP (Sect. 16.3.2.3)
4. Average the posteriors at each coordinate from both the trees

Learning unaries
5. Learn unaries using a random forest trained with the label posteriors (Sect. 16.3.3)

Bootstrapped inference
6. Repeat steps 1–3 using the learned unaries (an example of typical results at each
step is shown in Fig. 16.2)

It can be argued that since our model is undirected (no temporal directionality is
intended), the forward and backward tree could be combined into a single undirected
model. However, this model would have a loopy temporal structure and lose the
desirable property of performing efficient and exact inference of pixel labels.

16.3.2.3 Intra-frame Smoothing of Pixel Labels

We can optionally obtain a smooth, yet edge sensitive, labeling in each frame by
using the pixel posteriors computed thus far as pixel unaries and applying loopy BP
[28] on a standard 8-neighborhood grid. We use contrast sensitive edge potentials as
in [315], and 50 iterations of message passing. The resulting marginals provide us
with label confidences (see Fig. 16.2(c)). The drawback of performing smoothing
is that the marginals tend to be over confident (see Fig. 16.2(d)). This is sometimes
undesirable, for example in long sequences, in which new objects/categories appear,
the inference should ideally assign low confidence to them to reduce false positive
labeling. Therefore, we avoid smoothing in long sequences (see Sect. 16.4).
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Fig. 16.2 The first two rows show the image sequence and ground truth from the SegTrack dataset
[373]. The camera is moving in this sequence. The segmentation algorithm in this sequence has
to cope with fast shape changes, motion blur and overlap between foreground and background
appearance models. Inferred marginals of Za

1:n−1 before smoothing are shown in row (c). Note
how the confidence decreases from the labeled first frame. The marginals after smoothing are
shown in row (d). Observe the increased confidence due to smoothing. The MAP estimates of these
marginals are shown in row (e). Note that some part of the girl’s hands and leg are missing. The
unaries learnt using the marginals in row (c) are shown in row (f) and its MAP estimate is shown
in row (g). We see from (h) that the legs and hands are labeled correctly along with some false
positive background labels. Bootstrapping this prediction and performing inference once again
results in the confidences shown in row (g). The corresponding MAP estimate in row (i) shows
almost no background false positives, and the missing legs and hand in row (d) are recovered. The
cut-out in row (j) has sharp edges and is clean
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16.3.3 Learning Pixel Unaries Using a Random Forest

In the first iteration of inference, we set the unaries to uniform distributions and
use our proposed inference technique to estimate the pixel label posteriors. We then
train a decision forest [44] using these posteriors as soft pixel labels, i.e. each pixel
has a vector label instead of a scalar class label. We term this forest trained in a
semi-supervised manner, the soft label Random Forest (slRF). In practice, we adopt
the standard information gain evaluation criterion (see Chap. 4) to train our slRF, as
it is directly suited to training by taking into account the entropy of soft labels. We
use simple but computationally efficient pixel intensity difference features at each
split node as in [341].

Our semi-supervised training of the forest is different from the transductive for-
est described in Chap. 8. In the transductive forests, labeled and unlabeled data are
treated separately and a new information gain criterion is introduced to combine la-
bel and appearance-based entropies. In contrast, we first assign each unlabeled data
point a soft label obtained from the label inference step. At training time, we com-
pute a histogram of soft labels at each node and use the conventional information
gain criterion to evaluate the split function.

Some interesting contrast can be drawn with the auto-context work of [375] and
related ideas in [341], where the confidence maps from a classifier output (soft la-
bels) are used as the basis of features for training a subsequent classifier that can then
learn higher level context. These iterative approaches demonstrate that the classifi-
cation accuracy improves by using soft labels as features. However, the auto-context
learning is fully supervised, unlike the semi-supervised training of the slRF which
uses posterior marginals as labels.

In the second iteration of inference, we use the predictions from the slRF as pixel
unaries and perform label inference. These unaries, learnt in a semi-supervised man-
ner can help improve segmentation accuracy, as shown in Fig. 16.2(g, h). Unlike tra-
ditional tracking algorithms were the unaries are learnt using the first frame labels,
we use the entire set of video data and the corresponding inferred labels to learn the
unaries.

In some approaches to segmentation [103], labels are propagated to the adja-
cent frame and their MAP estimate is used to update the unary parameters. This is
sub-optimal, given that the entire video volume is not used to update the unary. In
contrast, our efficient inference method allows us to pool in the entire set of video
data and the label posteriors to learn the unaries. The whole approach is summarized
in Algorithm 16.1.

16.4 Experiments and Results

We evaluated the performance of our approach in a tracking and segmentation set-
ting using the challenging SegTrack [373] dataset. This dataset, annotated with
ground truth, consists of six sequences with clutter, self-occlusion, small sized ob-
jects and deformable shape. The sequences are captured with a moving camera in
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Table 16.1 Quantitative evaluation on the SegTrack tracking and segmentation dataset [373]. In
all these experiments only the start frame of the video sequence is user labeled. We used a single
set of model parameters to obtain these results. The score is the average label mismatch per frame.
Our score is better or only marginally worse in five out of the six sequences as compared to the state
of the art methods. Note how the score improves between the first and second pass of inference.
In the Penguin sequence, inference without unaries outperforms the other methods. However, poor
unary accuracy results in performance degradation after bootstrapping the learnt unary for a second
round of inference. We used label smoothing for this dataset. See Fig. 16.3 for qualitative results

Sequence Chockalingam
et al. [66]

Tsai et al.
[373]

Fathi et al.
[103]

Our method

Inference Learnt
unary

Inference with
learnt unary

Parachute 502 235 251 405 1294 258

Girl 1755 1304 1206 1232 2236 820

Monkey-dog 683 563 598 387 2304 589

Penguin 6627 1705 1367 1212 4285 21141

Bird-fall 454 252 342 374 2900 259

Cheetah 1217 1142 711 1088 1225 923

three of the sequences. In Table 16.1 we report our score along with some of the
recent state of the art approaches. Each channel in all the images are scaled to lie
between [0.0,1.0]. We use patches of size 7 × 7 centered on each pixel. In our tree
model, we set λ to 0.9. We use the random forest (RF) classifier as in [341] with
16 trees, each of depth 8. Input LAB patches of 21 × 21 are extracted around every
second pixel on both axes. We leave out border pixels in a 12 pixel band to fit all
rectangular patches. We use the same kind and number of features as in [341]. The
key difference is that we use the inferred soft labels to train the random forest (slRF).
We compute the entropic information gain and the leaf node distributions (normal-
ized histograms) by treating the data point label as a vector whose elements sum to
unity. We note that no change was required to the entropic information gain criterion
as it is convenient to use the label distribution directly to compute the entropy of the
pixel labels. This is an advantage of using the random forest as compared to other
classifiers.

The qualitative results are shown in Fig. 16.3 and the corresponding quantitative
results are shown in Table 16.1. In five out of the six sequences we perform better or
are only marginally worse than the state of the art. In the remaining case (Penguin),
inference without the learned unaries outperforms the state of the art. The unaries in
this case are very poor due to severe overlap between foreground and background.
Fathi et al. [103] particularly design an adaptive weighting scheme to control the
influence of the unaries during segmentation. The idea is to clamp highly certain
labels in a few frames after inference and then adapt the contribution of the unaries
based on the accuracy of their prediction of these clamped labels. Such an approach
could also be incorporated into our probabilistic framework in the future albeit with
an introduction of an additional parameter to control the influence of the unaries in
the posterior.
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Fig. 16.3 Qualitative results on the SegTrack dataset [66, 373]. Notice how our algorithm is able
to cope with motion blur (a), large displacement (d, j), small sized objects (f). The main failure case
is (h) due to severe overlap in appearance between the foreground and background. See Table 16.1
for quantitative results

16.5 Advantages and Drawbacks

The key advantages of our proposed approach are:

1. Our temporal tree-structured model permits exact and efficient inference of pixel
labels.
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2. We avoid sequential propagation of erroneous instantaneous decisions and there-
fore reduce false positives (see [53] for quantitative arguments).

3. We avoid the use of short time window-based processing which are currently
used in several video segmentation approaches [373], quite often due to compu-
tational inefficiency.

4. We can learn unaries efficiently, using both labeled and unlabeled data, with our
proposed slRF to improve segmentation accuracy.

Our approach suffers from the following drawbacks:

1. We are currently restricted to segment classes which have sizes above the patch
resolution of 7 × 7. Using higher resolution images should alleviate this problem
to a large extent or replacing patches with super-pixels.

2. The uncertainty in the pixel marginal posteriors is based on the number of pair-
wise cliques a patch is part of (its neighborhood connectivity), and does not in-
clude the uncertainty with which the clique was formed in the tree model. As part
of future work, we would like to include this uncertainty in the model to improve
performance.

3. The method is currently not applicable to real-time scenarios. It takes 3 seconds
per frame for label inference and 3.0 minutes for computing the forward and
backward temporal tree structure on an 8 core Intel Zeon 2.2 GHz machine. Fur-
ther, the method is also memory intensive, taking up to 100 MB per frame for an
image resolution of 400 × 320 in our unoptimized C++ implementation. Learn-
ing of the unaries took about 25 seconds per frame also with an unoptimized
code.

16.6 Conclusions

This chapter has presented a novel tree-structured graphical model for video se-
quences and showed how to integrate a decision forest with this generative model
in a bootstrapped manner. In this model, the video time-series is modeled as a tem-
poral tree which links patches from the first frame to the last frame. The tree struc-
ture permits efficient and exact inference of pixel labels and their confidences. We
demonstrated that in several cases, robust pixel unaries can be learnt directly from
pixel marginal posteriors using our proposed soft label random forest and help im-
prove segmentation. The training of the soft label random forest is identical to a
standard random forest, except for the use of vector labels instead of hard scalar la-
bels. Both training and testing times are fast which makes it suitable for interactive
video segmentation in the future.

One of the other key benefits of our system is the ability to propagate label un-
certainties over time using exact inference. This is in contrast to most existing ap-
proaches which use short time window-based processing and sub-optimal instanta-
neous decision making. As part of our future work, we envisage the use of random
forests to learn the graphical model structure for a given video, in addition to the
class unaries.
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Classification forests, as discussed in Chap. 4, present a series of advantages which
make them a good choice for applications in medical image analysis. Classification
forests are inherent multi-class classifiers (which allows for e.g. the simultaneous
segmentation of different tissues), have good generalization properties (which is im-
portant as training data are often scarce in medical applications), and are able to deal
with very high-dimensional feature spaces (which permits the use of long-range,
context-rich features). In this chapter we demonstrate how classification forests can
be used as a basic building block to develop state of the art systems for medical im-
age analysis in two challenging applications. Given 3D multi-channel magnetic res-
onance images (MRI) as input we use forests for: (i) the tissue-specific segmentation
of high-grade brain tumors (namely glioblastoma tumors), and (ii) the segmentation
of multiple sclerosis (MS) lesions.
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17.1 Introduction

This chapter employs classification forests for the automatic, semantic segmentation
of anomalies in 3D magnetic resonance images of the brain.

Specifically, in Sect. 17.2 we discuss a method for segmentation of the indi-
vidual tissues of high-grade brain tumors, and in Sect. 17.3 we present a method
for segmentation of multiple sclerosis (MS) lesions. These two methods apply de-
cision forests for the classification of every voxel in the input, multi-channel MR
scan.

From a methodological point of view, the tumor segmentation application in-
vestigates the “augmentation” of the available input image channels via the effi-
cient estimation of approximate tissue probabilities. In contrast, the MS lesions seg-
mentation task uses the classification forest directly, though it employs different,
geometrically-inspired feature types. Further, for the MS application, we present an
analysis of the effect of individual forest parameters and the discriminative power
of each feature type and input channels.

Why Classification Forests for Medical Image Segmentation? We choose to
employ classification forests because of the three advantages highlighted below:

1. The efficiency of classification forests in dealing with high-dimensional spaces
allows us to use non-local and context-aware features, which describe spatial
locations based on a relatively large surrounding, and span a high-dimensional
feature space. Context-aware features have two possible advantages. First, these
features have the potential to successfully classify labels which usually cannot
be distinguished using only a local support around a voxel (cf. the tumor seg-
mentation work in [20, 205, 322, 385, 399]). Second, our experiments indicate
that learning based on context-aware features has an inherent regularizing effect
on the results. This regularization is not designed manually, but learned from the
training data.

2. Classification forests are inherently multi-label classifiers. This property allows
us to classify different tissues simultaneously, simplifying the modeling of the
distributions of the individual classes. This is in contrast to other classifiers
such as SVMs which are inherently binary classifiers [20, 385]. In order to
separate multiple classes, these classifiers usually employ a certain multi-class
strategy (e.g. hierarchical, or in the one-vs. -all manner). For these strategies,
several classes have to be grouped together, which can make the distribution in-
side the aggregate group more complex than the distribution of each individual
class.

3. The good generalization ability of classification forests is important in the med-
ical image analysis field in general and our setting in particular, because of the
inherent challenges in collecting and annotating large amounts of data for super-
vised learning.
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17.2 Classification Forests for Segmentation of Brain Tumor
Tissues

In this section, we use classification forests as our building block to perform tissue-
specific segmentation of brain tumors in multi-channel MR images.1 We focus on
high-grade glioma tumors (often referred to as glioblastoma). These tumors grow
rapidly, infiltrate the brain in an irregular way, and often create extensive vasculature
networks. The fast growth and the high blood consumption by the active cells (AC)
causes the death of the cells on the inside of the tumor, which then form the so-
called necrotic core (NC). Therefore, the necrotic core is surrounded by a varyingly
thick layer of active cells. Together, the necrotic core and the active cells form the
gross tumor (GT). Usually, the tumor itself is surrounded by a varying amount of
edema (E), in which there is an increased risk of finding isolated tumor infiltration.
Due to the complexity of the bio-mechanical processes involved, high-grade gliomas
have extremely irregular shape, heterogeneous appearance and varying location—
for an example, please compare the Figs. 17.1 and 17.3. Also, often in the necrotic
core there may be tumoral cells in a state of “suspended animation”. This makes
them particularly resistent to chemo- or radiotherapy, and make the prognosis of
glioblastoma one of the most devastating. For further information on high-grade
gliomas, please see [18].

In standard clinical routine, the diagnosis and treatment of high-grade gliomas
is based on multi-sequence MR images. Each sequence (also referred to as “chan-
nel”) is a 3D MR scans obtained with different protocols and settings. Multi-channel
scans are used since each protocol captures different properties of the tumor. Pop-
ular MR modalities used in clinical routine are: T1, T1 after injection of gadolin-
ium contrast agent (T1-gad), T2, and FLAIR. In the case of glioma tumors one can
observe that active cells show up as bright regions in T1-gad, while T2 and FLAIR
better visualize the edema (cf. Fig. 17.1). Thus, the different channels produce some-
what complementary information. Additionally, in our work, we consider two fur-
ther channels from diffusion tensor imaging (DTI): the so-called DTI-p and DTI-q
maps. Those channels have the potential to provide further discriminative informa-
tion about the tumor structure as well as its possible reoccurrence [299]. We indicate
the input multi-channel MR data by J = (JT1-gad, JT1, JT2, JFLAIR, JDTI-q, JDTI-p),
where each component is a whole 3D image. Thus J could also be thought of as 4D
image data.

Our goal is to segment high-grade gliomas as well as the individual tissue compo-
nents automatically and reliably. This would e.g. (1) speed-up the interactive delin-
eation of the tissue components through automatic initialization, and (2) allow direct
volume measurements. Delineation of tissue components is crucial for radiotherapy
and surgery planning and is currently performed manually in a labor intensive fash-
ion. Volume measurements are critical for the evaluation of treatment [400], but are
seldom performed since manual tumor segmentation is often impractical in a routine
clinical setting.

1A more detailed description of our work is available in [428].
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Fig. 17.1 Example of one of 40 patients in our high-grade glioma database, with tissues labeled
as active cells (red), necrotic core (green), and edema (yellow). The figure shows a representative
axial slice through 3D image volumes

Fig. 17.2 Method overview: Given the input data (A), we estimate rough, initial probabilities for
each tissue (B), based only on the intensity of each voxel. This can be thought of as augmenting
the input image channels with further semantically meaningful channels. In a second step, we use
both the raw input data (A) and the tissue probabilities in (B) as input features to a classification
forest. Such multi-channel, context-aware forest yields high-quality semantic segmentations (C)

While most previous research has focused on the segmentation of gross tumor
[137, 245, 399], or tumor and edema [72, 136, 297, 385], we perform the 3D de-
lineation of three relevant tissues types: active cells (AC), necrotic core (NC), and
edema (E)—as also do [20, 385]. Distinguishing between volumes of individual
tissue types, especially active cells and necrotic core, is an important step for as-
sessment of treatment response. For example, an effective drug might not change
the gross tumor volume while still transforming active into necrotic cells (a desir-
able outcome). To detect this change, the volumes of both of these tissues must be
monitored.

17.2.1 Context-Aware Voxel Classification

Our approach is based on classification forests as presented in Chap. 4. Previously,
several works have applied discriminative learning techniques to tumor segmenta-
tion [20, 72, 137, 322, 385, 399]. Mostly, a learning method using comparably local
features is combined with a regularization step, for example by modeling the bound-
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ary [167, 294], or by applying a variant of a random field spatial prior (MRF/CRF)
[72, 137, 399].

The multi-channel MR input data we are dealing with are illustrated in Fig. 17.1.
The schematic overview of our approach is given in Fig. 17.2. We adapt the standard
classification forest by providing approximate tissues class probabilities as addi-
tional input features. In its effect, this step is similar to the idea of auto-context [375]
or entanglement (Chap. 15). However, in auto-context the same classifier is applied
repeatedly to compute increasingly refined versions of class probabilities. Here in-
stead, the approximate, initial class probabilities are computed more readily via
Gaussian mixture models (GMM) applied to each tissue. The GMM-based mod-
eling has the advantage of faster training, at the cost of a lower test accuracy (cf.
Fig. 17.5). This step is described in detail in Sect. 17.2.1.1.

One advantage of our auto-context-type approach is that it has an implicit regu-
larizing effect, where the amount of regularization is not hand-designed but learned
from data. In turn, this yields high-quality segmentation accuracy with low model
complexity (which tends to mitigate overfitting).

Besides the use of initial tissues probabilities, the second important characteristic
of our approach is that we use spatially non-local and context-aware features, with
their advantages as discussed above. We describe such features in Sect. 17.2.1.2.

As mentioned in the introduction, each voxel is classified into one of four classes
C = {B,AC,NC,E} for background (B), active cells (AC), necrotic core (NC), and
edema (E). Based on the tissue-specific segmentation results, we define the gross tu-
mor as GT = AC∪NC. The MR data J = (JT1-gad, JT1, JT2, JFLAIR, JDTI-q, JDTI-p)

serve as input data, while the learning is based on expert voxel-wise manual anno-
tations of the training data set.

17.2.1.1 Estimating Initial Tissue Probabilities

As the first step of our approach, we estimate the initial class probabilities for a
given patient as posterior probabilities based on the likelihoods obtained by training
a set of GMMs on the training data. For each tissue class c ∈ C, we train a single
GMM, which captures the likelihood p(J |c) of the multi-dimensional intensity for
this class. For a given test data set J , the GMM-based posterior probability for the
class c is estimated for each point p ∈N

3 as

pGMM(c|p) = p(J (p)|c)pc∑
cj

p(J (p)|cj )pcj

, (17.1)

with pc denoting the prior probability for the class c. We can now use the probabili-
ties pGMM

c (p) = pGMM(c|p) directly as input for the decision forests, in addition to
the multi-channel MR data J . So now, the augmented set of channels for one patient
is

C = (
JT1-gad, JT1, JT2, JFLAIR, JDTI-q, JDTI-p,p

GMMAC,pGMMNC ,

pGMME ,pGMMB
)
. (17.2)
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For simplicity, we will denote individual channels by Cj . Please note that we can
use the GMM-based probabilities for maximum a posteriori classification as c∗ =
arg maxc pGMM(c|p). We will use this as a baseline for comparison in Sect. 17.2.2.

17.2.1.2 Spatial Visual Features

We employ three parametrized families of intensity-based features. These features
describe a voxel based on the appearance of its (relatively large) neighborhood,
defined over multiple channels.

As usual, given a 3D voxel location p, its feature vector is v(p) = (v1, . . . , vd).
With slight abuse of notation we denote the component features v

type
params to highlight

the associated parameters and feature type. During training, the type and parameter
values for each feature are randomly drawn at every node. Also, in our notation Cj is
an input channel, while Rl(p) denotes a p-centered and axis aligned 3D box region
in Cj with edge lengths l = (lx, ly, lz). Finally, δ ∈R

3 is an offset vector in 3D.

• Feature Type 1—Intensity difference: This feature type measures the difference
between the intensity at a reference position p in channel Cj1 , and the intensity at
a probe point p + δ in channel Cj2

v
probe
j1,j2,δ

(p,C) = Cj1(p) − Cj2(p + δ). (17.3)

• Feature Type 2—Mean intensity difference: This feature type measures the
difference between the intensity mean within a box around p in Cj1 , and the
intensity in a probe box around the point p+δ in the (in general different) channel
Cj2

vbox
j1,j2,l1,l2,δ

(p,C) = 1

|Rl1 |
∑

p′∈Rl1 (p)

Cj1

(
p′) − 1

|Rl2 |
∑

p′∈Rl2 (p+δ)

Cj2

(
p′). (17.4)

• Feature Type 3—Intensity range along ray: This feature type captures the in-
tensity range along a 3D line between p and p + δ in one channel. This feature
is designed with the intuition that structure changes can yield a large intensity
change, e.g. NC being dark and AC bright in T1-gad.

v
ray
j,δ(p,C) = max

λ

(
Cj (p + λδ)

) − min
λ

(
Cj(p + λδ)

)
with λ ∈ [0,1]. (17.5)

The features above capture both appearance context (when channels are raw
input intensities) and semantic context (when channels are the GMM probabilities
of tumor tissues), as defined in Chap. 15.

17.2.2 Evaluation

We evaluate our approach on a set of multi-channel 3D MR data for 40 patients
diagnosed with high-grade glioma. All data are acquired prior to treatment on the
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Fig. 17.3 Examples of results on eight (previously unseen) test patients. Results are obtained by
a forest with MR, and DTI input, using GMM intermediate tissue probabilities, trained on 30 pa-
tients. Qualitatively, the automatic segmentation results (bottom row) look very similar to the man-
ual, ground truth segmentations (middle row). Tissues are color coded: AC = red, NC = green,
E = yellow. The high accuracy of our results is quantitatively confirmed in Fig. 17.4. Only repre-
sentative axial slices of the multi-channel 3D scans set are shown here

same magnetic resonance scanner. For all 40 patients, a manual segmentation of
the three classes of AC, NC, and E is obtained in 3D with the GeoS interactive
segmentation tool in [76].

We try to keep the amount of data pre-processing at a minimum. We perform
skull stripping of MR channels [350], and for each patient we register all image
channels with respect to her T1-gad image, used as reference. We also avoid a full
non-linear bias-field correction, and only align the mean intensities of the images
within each channel via a global multiplicative factor. All these steps are fully auto-
matic.

The evaluation reports the Dice score between the manual segmentations and
the results. Besides the tissue-specific segmentation results, we also evaluate the
segmentation quality for the gross tumor (with GT = AC ∪ NC).

17.2.2.1 Experiments

We perform an extensive series of cross-validation experiments to evaluate our
method. For this, the 40 patients are randomly split into non-overlapping training
and testing data sets. To investigate the influence of the size of the training set and
generalization properties of our method, we perform experiments with the following
training/testing sizes: 10/30, 20/20, 30/10. For each of those three ratios, we perform
10 algorithm runs. Each run is applied to a randomly different training/testing data
split.

To demonstrate the influence of each component of the method, we also perform
tests on forests without GMMs, and compare to the results of GMM only. Finally,
in order to quantify the effect of diffusion tensor channels we run all experiments:
(i) with conventional MR input only (no DTI), and (ii) with MR and DTI. Overall,
this results in 30 random training sets, and 600 tests for each of the six approaches.
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Fig. 17.4 Average mean and standard deviations of DICE scores, for experiments on 10 random
folds, with training/test data set sizes of 10/30, 20/20, and 30/10. Going from left to right, the vari-
ous approaches yield higher mean scores and lower standard deviations. Our approach (rightmost)
shows increased robustness to amount of training data, indicating better generalization

The evaluation is performed with all images sampled to isotropic spatial resolution
of 2 mm, and forests with T = 40 trees of depth D = 20. With these settings, the
training of one tree takes 10–25 min, and testing 2–3 min, depending on the size
of training set and the number of channels. The algorithm and feature design were
done on an independent 20/20-fold.

Figure 17.3 shows qualitative results. Quantitative, comparative results for var-
ious forest configurations are presented in Fig. 17.4. The highest test accuracy is
achieved by the proposed method (Forest(GMM, MR, DTI)), compared to the other
variants. In particular, we observe a clear improvement of forests vs. GMM only.
We can also see a small, but consistent improvement of accuracy when using the
additional DTI channels.

Comparison to quantitative results of other approaches is difficult for a number
of reasons, most prominently the different input data. To provide some indicative
context, we cite results of a recent work from [20]. There, the mean and standard
deviation for a leave-one-out cross-validation on 10 glioma patients, based on mul-
tichannel MR are as follows: GT: 77 ± 9, AC: 64 ± 13, NC: 45 ± 23, E: 60 ± 16.
Our results compare favorably. In fact, for our 30/10-runs we get: GT: 90 ± 9, AC:
85 ± 9, NC: 75 ± 16, E: 80 ± 18, and for the more challenging 10/30-runs (less
training data), we get GT: 89 ± 9, AC: 84 ± 9, NC: 70 ± 19, E: 72 ± 23.

Sensitivity to variation of parameters is assessed by varying T ∈ {15, . . . ,40} and
D ∈ {12, . . . ,20}, for the ten 30/10-tests. The results are summarized in Fig. 17.5.
We observe robustness with respect to the selection of these values, especially T .

The algorithm presented here for the automatic segmentation of brain tumors
has won the MICCAI 2012 BraTS Multimodal Brain Tumor Segmentation Chal-
lenge.2

2http://www2.imm.dtu.dk/projects/BRATS2012.
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Fig. 17.5 Sensitivity to parameters is tested by varying the number of trees T = {15, . . . ,40} and
the tree depth D = {12, . . . ,20}. The figure shows mean Dice scores for ten random 30/10-cross-
validation runs. We observe robustness with respect to the number of trees

17.3 Classification Forests for Segmentation of MS Lesions

This section presents the application of classification forests to the task of segmen-
tating multiple sclerosis lesions in brain MR scans.3

Multiple sclerosis (MS) is a chronic, inflammatory and demyelinating disease
that primarily affects the white matter of the central nervous system [55]. Automatic
detection and segmentation of MS lesions can help diagnosis and patient follow-up.
It offers an attractive alternative to manual segmentation which remains a time-
consuming task and suffers from intra- and inter-expert variability. However, MS
lesions show a high variability in appearance and shape which makes automatic
segmentation a challenging task. In particular, MS lesions lack common intensity
and texture characteristics, their shapes are variable and their location within the
white matter varies across patients.

Our segmentation problem can be formalized as a binary classification of voxel
samples into either background or lesions. Taking advantage of context-aware fea-
tures in the classification task is key to detect the subtle differences between MS
lesions and healthy brain tissue. We exploit a new geometric feature which stems
from the assumption that a healthy brain is approximately symmetric with respect
to the mid-sagittal plane, and that MS lesions tend to develop asymmetrically. We
then show how the forest automatically selects the most discriminative channels for
the task of MS lesion segmentation.

17.3.1 Data

The MICCAI 2008 Multiple Sclerosis Segmentation Grand Challenge (MSGC)
[358] makes publicly available two datasets through their website: a public dataset
of labeled MR images which can be used to train a segmentation algorithm; and
a private dataset of unlabeled cases on which the algorithm should be tested. The
public dataset contains 20 cases which are labeled by a medical expert. The private
dataset contains 25 cases, each annotated by three experts. For each case, three MR

3More details can be found in [126].
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Fig. 17.6 Sample case from the public Multiple Sclerosis Segmentation Grand Challenge dataset.
From left to right: preprocessed T1-weighted (JT1), T2-weighted (JT2) and FLAIR MR images
(JFLAIR), the associated ground truth (GT) and the registered white matter atlas (PWM)

volumes are provided: a T1-weighted image, a T2-weighted image and a FLAIR
image.

We sub-sample and crop the images so that they all have the same size,
159 × 207 × 79 voxels, and the same resolution, 1 × 1 × 2 mm3. Background mag-
netic field inhomogeneities are corrected [300] and inter-subject intensity variations
are normalized [308]. The images are then aligned on the mid-sagittal plane [301].
A spatial prior is added by registering the MNI atlas [98] to the anatomical images,
each voxel of the atlas providing the probability of belonging to the white matter
(PWM), the gray matter (PGM) and the cerebrospinal fluid (PCSF). Please see also
Fig. 17.6 for an illustration

As before, we have augmented the set of available input channels with priors for
healthy brain tissue types. Both anatomical images and spatial priors will be treated
under the unified term channel, and denoted C = (JT1, JT2, JFLAIR,PWM,PGM,

PCSF).

17.3.2 Feature Types

For the segmentation of MS lesions, we compute three types of intensity-based
feature. The actual feature types differ from the ones used for brain tumors in
Sect. 17.2.1.2 in order to match the specifics of the magnetic resonance acquisi-
tion modality. However, it is interesting to note that the feature types for both tasks
are similar in nature, and most importantly, both use the idea of spatial context-
awareness.

Of the following feature types, the first one is local, measuring only the intensity
of a voxel in a single channel, while the other two are non-local and context-aware.

• Feature type 1—Local intensity: This local feature type measures the intensity
in channel C at the location p, where C is either an MR image, or a prior channel

vloc
j (p) = Cj(p). (17.6)
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Fig. 17.7 2D illustration of context-aware features. (a) A context-rich feature with two regions
R1 and R2 (blue boxes) offset relatively to p (small red square). (b–d) Three examples of ran-
domly sampled features in an extended neighborhood. (e) The symmetric feature with respect to
the mid-sagittal plane. (f) The hard symmetric constraint. (g–i) The soft symmetry feature consid-
ering neighboring voxels in a sphere of increasing radius

• Feature type 2—Context-rich: This non-local feature type compares the inten-
sity at a reference voxel p with mean intensities of displaced, probe regions, in
possibly different channels. More specifically, it compares the local voxel value
in channel C1 with the mean value in channel C2 over two 3D boxes R1 and R2
within an extended neighborhood. Here, Ri stands for Rli (p + δi ), that is, a box
with side lengths li , centered around a probe point p + δi . The feature type thus
reads

vcont
j1,j2,R1,R2

(p) = Cj1(p) − 1

|R1|
∑

q∈R1

Cj2(q) − 1

|R2|
∑

q∈R2

Cj2(q), (17.7)

where C1 and C2 can be both, intensity or prior channels. The regions R1 and R2
are sampled randomly in a large neighborhood of the voxel p (cf. Fig. 17.7). The
sum over these regions is efficiently computed using integral volume processing
[342]. This feature captures both appearance context (when channels are raw
input intensities) and semantic context (when channels are healthy tissue priors),
as defined in Chap. 15.

• Feature type 3—Symmetry: The second context-aware feature compares the
voxel of interest at location p with its symmetric counterpart with respect to the
mid-sagittal plane, denoted p′

v
sym
j (p) = Cj (p) − Cj

(
p′), (17.8)

where Cj is restricted to be an intensity channel. However, instead of comparing
with the exact symmetric (p′) of the voxel, we consider, respectively, its 6, 26
and 32 neighbors in a sphere Sp′ (cf. Fig. 17.7), centered on p′. Thus, we ob-
tain a softer version of the symmetric feature which relaxes the hard symmetric
constrain and reads

v
sym
C,Sp′ (p) = min

q∈Sp′

{
C(p) − C(q)

}
. (17.9)
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Table 17.1 Average results computed by the MSGC on the private dataset and compared to the
method presented in [353]. The relative mean improvement over the algorithm from [353] on the
private dataset is defined as RI = (scoreRF − scoreSouplet)/scoreSouplet, as well as the p-value.
The independent quantitative evaluation confirms an improvement over [353], with significant im-
provements in boldface. Our approach achieves a slightly higher true positive rate (TPR) and a
comparable false positive rate (FPR), but with much lower volume difference (VD) and surface
distance (SD) values

Rater Metric [%] Souplet et al. [353] Class. Forest RI [%] p-value

CHB VD 86.48 ± 104.9 52.94 ± 28.63 −38.7 0.094

SD 8.20 ± 10.89 5.27 ± 9.54 −35.7 4.2 · 10−6

TPR 57.45 ± 23.22 58.08 ± 20.03 +1.0 0.90

FPR 68.97 ± 19.38 70.01 ± 16.32 +1.5 0.70

UNC VD 55.76 ± 31.81 50.56 ± 41.41 −9.4 0.66

SD 7.4 ± 8.28 5.6 ± 6.67 −24.3 6.1 · 10−3

TPR 49.34 ± 15.77 51.35 ± 19.98 +3.9 0.54

FPR 76.18 ± 17.07 76.81 ± 11.70 +0.1 0.83

17.3.3 Experiments

We train a classification forest on the whole public dataset from the MS Lesion
Challenge, i.e. 20 labeled cases. Forest parameters are fixed to the following values:
tree depth D = 20, number of trees T = 30, number of random regions |T | � 950
(fixed for all split nodes), lower bound for the information gain Imin = 10−5, and
the posterior threshold τposterior = 0.5. Considerations that lead to these parameter
values are detailed in Sect. 17.3.4.2.

The MSCG website carried out a complementary and independent evaluation of
our algorithm on the previously unseen private dataset. Table 17.1 confirms a signif-
icant improvement of the results of our algorithm over [353], winner of the MICCAI
MS Segmentation Challenge 2008. The presented approach achieves, on average, a
slightly higher true positive rate (TPR), which is beneficial, and a comparable false
positive rate (FPR), but with lower volume difference (VD) and surface distance
(SD) values (see Table 17.1). Pair-sample p-values were computed for the t -test
on the private dataset. Results show significant improvement over the method pre-
sented in [353] on SD, p = 4.2 · 10−6 and p = 6.1 · 10−3 for CHB and UNC raters,
respectively.

17.3.4 Discussion

17.3.4.1 Interpretation of Segmentation Results

Although segmentation results include most MS lesions delineated by the expert
(see Fig. 17.8), we observe that some MS lesions are missing. Missed MS lesions
are located in specific locations which are not represented in the training data, e.g.
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Fig. 17.8 Segmenting Case CHB05 from the public MSGC dataset. From left to right: prepro-
cessed T1-weighted (JT1), T2-weighted (JT2) and FLAIR MR images (JFLAIR) overlayed with the
associated ground truth GT, the posterior map Plesion displayed using an inverted gray scale and the
FLAIR sequence overlayed with the segmentation Seg = (Plesion � τposterior) with τposterior = 0.5.
Segmentation results show that most of the lesions are detected. Although some lesions are not
detected, e.g. a lesion in the corpus calossum in slice 38, they appear enhanced in the posterior
map. Moreover the segmentations of slices 38 and 42 show peri-ventricular regions, visually very
similar to MS lesions, but not delineated in the ground truth

in the corpus callosum (see Fig. 17.8, slice 38). This is a limitation of the supervised
approach. In this very case, however, the posterior map highlights the missed lesion
in the corpus callosum as belonging to the lesion class with high uncertainty. Low
confidence (or high uncertainty) reflects the incorrect spatial prior inferred from an
incomplete training set. Indeed, in the training set, there are no examples of MS
lesions appearing in the corpus callosum.

On the contrary, the classification forest is able to detect suspicious regions with
high certainty. Suspicious regions are visually very similar to MS lesions and widely
represented in the training data, but they were not delineated by the expert, e.g. the
left frontal lobe lesion again in Fig. 17.8, slice 38. The appearance model and spatial
prior implicitly learned from the training data points out that hyper-intense regions
in the FLAIR MR sequence which lie in the white matter can be considered as MS
lesions with high confidence.

17.3.4.2 Influence of Forest Parameters

This section aims at understanding the effect of the number of trees T and their
depth D on the quality of segmentation results.
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Fig. 17.9 Influence of forest parameters on segmentation results. Both curves were plotted using
mean results from a 3-fold cross-validation on the public dataset. Left: the figure shows the influ-
ence of forest parameters on the area under the precision-recall curve. Right: the figure shows the
influence of forest parameters on the area under the ROC curve. The ideal classifier would ensure
area under the curve to be equal to 1 for both curves. We observe that: (1) for a fixed depth, increas-
ing the number of trees leads to better accuracy; (2) for a fixed number of trees, low depth values
lead to underfitting while high values lead to overfitting; (3) overfitting is reduced by increasing
the number of trees, thus justifying the use of decision forests

A 3-fold cross-validation on the public dataset is carried out for each parameter
combination. Segmentation results are evaluated for each combination using two
different metrics: the area under the receiver operating characteristic (ROC) curve
and the area under the precision-recall curve. The ROC curve plots the true posi-
tive rate (TPR) vs. the false positive rate (FPR) scores computed on the test data for
every value of τposterior ∈ [0,1]. The precision-recall curve plots the positive pre-
dictive value (PPV) vs. TPR scores computed on the test data for every value of
τposterior ∈ [0,1].4 The results are reported in Fig. 17.9. This analysis was carried
out a posteriori using out-of-bag samples.

We observe that: (1) for a fixed depth, increasing the number of trees leads to
better generalization; (2) for a fixed number of trees, low depth values lead to un-
derfitting while high depth values lead to overfitting; (3) overfitting is reduced, in
general, by increasing the number of trees. This justifies the use of a decision forest.

Forest parameters were selected in a safety-area with respect to under- and over-
fitting. The safety-area corresponds to a sufficiently flat region in the evolution of
the areas under the ROC and precision-recall curves. We also observe that the per-
formance of the classifier stabilizes for sufficiently large forests.

17.3.4.3 Analysis of the Relevance of Feature Types and Channels

Unlike other classifiers, classification forests provide an elegant way of ranking the
employed features according to their discriminative power. In this section, we aim at

4With TP, FP, TN, and FN denoting the number of true/false positive/negatives, respectively, we
have TPR = TP/(TP + FN), FPR = FP/(FP + TN), and PPV = TP/(TP + FP).
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better understanding which are the most discriminative feature types (local, context-
rich or symmetric) and input channels for the task of MS lesion segmentation.

As a first step of the analysis, we compute the statistics of how often the single
feature types are selected, without taking into account the depth at which the fea-
tures are chosen. We observe that local features were selected in 24 % of the nodes,
context-rich features were selected in 71 % of all nodes whereas symmetry features
were selected in 5 % of the nodes. This highlights the importance of contextual fea-
tures. They get picked often by the training procedure as they are discriminative,
they are associated with large information gain.

In the second step of the analysis, we focus on the depth at which a given feature
was selected. We find that for every tree in the forest, the root node always applies
a local test on the FLAIR sequence. This means that out of all available features
types, with all randomly drawn parameters, vloc

FLAIR was found to be the most dis-
criminative. At the second level of the tree, a context-rich feature on spatial priors
(vcont

WM,GM) appears to be the most useful over all trees in the forest. The major effect
of this feature is to discard all voxels which do not belong to the white matter.

The optimal decision sequence found while training the forest can thus be
thought of as a threshold on the FLAIR MR sequence followed by an intersection
with the white matter mask. Interestingly, this sequence of steps perfectly matches
the first and second steps of the pipeline proposed by the winner method of the
MICCAI 2008 challenge [353]. However, note that in our case, this sequence has
been discovered automatically by the forest training process. Furthermore, many
additional (and automatically selected) tests are carried out by the lower section of
each tree in the forest.

17.4 Conclusion

This chapter has demonstrated the power of applying classification forests to the task
of brain lesion delineation in 3D, multi-channel magnetic resonance scans. Specifi-
cally, we have focused on the semantic segmentation of high-grade brain tumors and
multiple sclerosis lesions. Classification forests allow us to use context-rich features
to perform efficient classification of all voxels into all the (healthy or diseased) tis-
sues of interest.

For the segmentation of brain tumors, we augment forests by integrating GMM-
based tissue probabilities as features, in conjunction with the original MR images
themselves. This allows incorporation of “semantic context” and results in accurate
segmentation of the individual sub-regions of glioma tumors (active region, necrosis
and edema). This is key e.g. in tracking disease progression and assessing a drug’s
effectiveness.

For the segmentation of multiple sclerosis lesions, prior probabilities of healthy
brain tissues are derived from registration with a brain atlas. The use of such priors
as (augmented) input features together with the context-rich nature of forests result
in one of the most accurate algorithms on the public MICCAI MS challenge dataset.



260 E. Geremia et al.

The use of long-distance voxel comparisons as tests in the forest nodes produces
an implicit regularization of the output segmentation, with the amount of regular-
ization learned from data. Therefore, we can avoid hand-designed spatial priors and
regularization post-processing, resulting in a system with relatively low model com-
plexity. Finally, detailed analysis of the learned trees and their nodes allows us to
understand why forests work, how they compare to previous algorithms, and possi-
bly how to improve their behavior.



Chapter 18
Manifold Forests for Multi-modality
Classification of Alzheimer’s Disease

K.R. Gray, P. Aljabar, R.A. Heckemann, A. Hammers, and D. Rueckert

Neurodegenerative disorders, such as Alzheimer’s disease, are associated with
changes in multiple neuroimaging and biological measures. These may provide
complementary information for diagnosis and prognosis. This chapter describes a
framework within which a supervised version of manifold forests is used to per-
form multi-modality classification of patients with Alzheimer’s disease, patients
with mild cognitive impairment, and elderly cognitively normal individuals. In this
chapter, manifold forests are used to derive supervised similarity measures, with the
aim of generating manifolds that are optimal for the task of clinical group discrim-
ination. Embeddings are thus learned from labeled training data and used to infer
the clinical labels of test data mapped into this space. Similarities from multiple
(image- and non-image-based) modalities are combined to generate an embedding
that simultaneously encodes information from all diverse features. Multi-modality
classification is performed using coordinates from this joint embedding. Manifold
forests provide consistent pairwise similarity measures for multiple modalities, thus
facilitating the combination of different types of feature data.

18.1 Introduction

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly,
with a worldwide prevalence that is expected to rise from the 26.6 million reported
in 2006 to over 100 million by 2050 [47]. There is currently no disease-modifying
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therapy, but ongoing clinical trials are focused on the development of new treat-
ments, including those aimed at lowering the risk of developing the disease or de-
laying its onset and progression [183]. Changes in the brain begin many years before
the onset of clinical symptoms, and any disease-modifying therapy would therefore
likely be of greatest benefit to asymptomatic individuals at high risk of disease de-
velopment. It has been estimated that a delay of one year in both disease onset and
progression would reduce the number of cases in 2050 by approximately 10 % [47].
The early identification of high-risk individuals is important to allow the recruitment
of appropriate participants for clinical trials. If a successful disease-modifying ther-
apy were to be developed, early identification would become even more important
to allow targeting of patients for whom the treatment may be most effective.

Changes in multiple neuroimaging and biological measures may provide com-
plementary information for the diagnosis and prognosis of AD. At present, clin-
ical diagnosis is based on assessments of cognition and behavior, which start to
decline in the later disease stages [243]. Recently published revisions to the diag-
nostic criteria incorporate suggestions that biological and neuroimaging biomarkers
of structural and molecular changes in the brain may be better suited for the early
detection of disease and for monitoring progression [2, 244, 354]. Automated classi-
fication of individual patients based on multiple biomarkers could provide valuable
support for clinicians, when considered alongside cognitive assessment scores and
traditional visual image analysis. This could be particularly useful for monitoring
patients with mild cognitive impairment (MCI), who are at increased risk of devel-
oping Alzheimer’s disease [289].

This chapter describes a framework within which a supervised variant of man-
ifold forests is used to perform multi-modality classification, with the aim of dis-
tinguishing between AD patients, MCI patients, and elderly cognitively normal in-
dividuals. Manifold forests are used to derive supervised similarity measures, with
the aim of generating manifolds that are optimal for the task of clinical group dis-
crimination. Embeddings are thus learned from labeled training data and used to
infer the clinical labels of test data mapped into this space. Similarities from multi-
ple modalities are combined to generate an embedding that simultaneously encodes
information from all features. Multi-modality classification is then performed using
coordinates from this joint embedding. Manifold forests provide consistent pairwise
similarity measures for multiple modalities, thus facilitating the combination of dif-
ferent types of feature. This is demonstrated by application to neuroimaging and
biological data.

18.2 Background: Biomarkers for Alzheimer’s Disease

Significant progress has been made in identifying the structural and molecular
changes in the brain that are associated with AD. It is characterized by the abundant
presence of two types of neuropathological structure: amyloid plaques and neurofib-
rillary tangles [86]. Disease development is thought to begin with the accumulation
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Fig. 18.1 FDG-PET and MR images depicting cerebral glucose metabolism and structure.
(a) FDG-PET images of AD patients. (b) FDG-PET images of healthy individuals. (c) MR im-
ages of AD patients. (d) MR images of healthy individuals

of β-amyloid plaques in the brain, whose presence triggers the formation of tau tan-
gles, ultimately leading to cell death and neuronal loss [329]. Surrogate measures of
the levels of β-amyloid and tau in the brain may be obtained from the cerebrospinal
fluid (CSF). The functional and structural changes caused by neuronal loss may be
assessed using positron emission tomography (PET) and magnetic resonance imag-
ing (MRI), respectively. These three biomarkers are briefly described in the sections
that follow, along with the risk factors for disease development.

18.2.1 Cerebrospinal Fluid Measures of Neuropathology

For protection and support, the brain is surrounded by CSF, which also fills the
central canal of the spinal cord. CSF may be extracted by lumbar puncture, in which
a needle is inserted into the spinal CSF between the lumbar vertebrae. AD and MCI
patients typically have reduced CSF β-amyloid and elevated CSF tau in comparison
with healthy individuals [151, 256, 379].

18.2.2 Functional Imaging with Positron Emission Tomography

PET imaging with the radiotracer 18F-fluorodeoxyglucose (FDG) can be used to
assess brain function in terms of the rate of cerebral glucose metabolism. As illus-
trated in Fig. 18.1, AD and MCI patients typically have reduced glucose metabolism
in temporo-parietal regions of the brain in comparison with healthy individu-
als [161, 202]. PET imaging with radiotracers for amyloid can be used to assess
intracranial β-amyloid deposition. One such tracer is 11C-Pittsburgh Compound B
(PiB) [185]. Details about PET image acquisition can be found in [316].
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18.2.3 Structural Imaging with Magnetic Resonance Imaging

The progressive structural damage caused by AD can be non-invasively assessed
using MRI. As illustrated in Fig. 18.1, AD and MCI patients typically have evidence
of cortical atrophy and enlarged ventricles in comparison with healthy individuals.
Temporal lobe atrophy is associated with AD, and the hippocampus, amygdala and
entorhinal cortex are particularly vulnerable to pathology [40]. Details about MR
image acquisition can be found in [221].

18.2.4 Risk Factors for Disease Development

Age is the most significant risk factor for AD [310], but genetic factors also play
a role. The ApoE gene is the only one so far shown to be associated with disease
development [86]. There are three major alleles of this gene: ε2, ε3 and ε4. The
ε4 allele is associated with an increased risk of disease development, and the ε2
allele with a reduced risk [71]. More extensive AD pathology is generally observed
in carriers of the ApoE ε4 allele than in non-carriers [313]. Genetics can therefore
impact the biological and neuroimaging biomarkers.

18.3 Multi-modality Classification Framework

The biomarker patterns described in the previous section are not specific to AD, and
there is increasing interest in using multi-modality imaging and biological data for
classification. Two independent studies using kernel combination techniques have
reported that classification based on multi-modality data is superior to that based on
any individual modality [162, 417]. The manifold forest-based framework described
in this chapter provides an alternative multi-modality approach.

18.3.1 Manifold Forests for Multi-modality Classification

A schematic overview of the manifold forest-based multi-modality classification
approach is shown in Fig. 18.2. A classification forest is applied to the feature data
from each modality independently, to obtain both single-modality classification re-
sults for comparison, as well as pairwise similarity measures between subjects.
These similarities are used to construct single-modality manifold representations
from labeled training data and then to infer the clinical labels of test data mapped
into this space. In contrast to the unsupervised manifold forests described in Chap. 7,
here classification forests are applied as an intermediate step to derive supervised
pairwise similarity measures, aiming to generate manifolds that are optimal for the
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Fig. 18.2 Overview of the multi-modality classification approach. Each classification forest (CF)
step provides a classification result whose performance may be reported. Classification forests are
used both to derive pairwise similarity measures for each feature set, and also to perform the single-
and multi-modality classification experiments

task of clinical group discrimination. Similarities from multiple modalities are then
combined to generate an embedding that simultaneously encodes information from
all features. Multi-modality disease classification is then performed by applying a
classification forest to coordinates from this joint embedding. Our technique pro-
vides consistent pairwise similarity measures between patients, for multiple modal-
ities. This facilitates the combination of different types of feature data, including
those in which the number of features differ by several orders of magnitude.

18.3.2 Implementation Details

The multi-modality classification framework described in this chapter has been im-
plemented using the R package for random forests. This is a port of Leo Breiman and
Adele Cutler’s original Fortran code, by Andy Liaw and Matthew Wiener [222].1

There are two key differences from the decision forest model presented in Chap. 3:
the randomness model, and the training objective function.

As described in Breiman’s original work [44], forest randomness is injected dur-
ing training by combining bootstrap aggregation (bagging) [42] with the randomized
node optimization method discussed in Sect. 3.3.6. Using bagging, the training set
for each individual tree in the classification forest is constructed by sampling N data
points at random with replacement from S0. As a result, approximately one third of
the available N data points are not present in the training set of each tree. These are
referred to as the “out-of-bag” data of the tree, for which internal test predictions
can be made. By aggregating the predictions of the out-of-bag data across all trees,
an internal estimate of the generalization error of the forest can be determined.

The Gini index [45] was used as the training objective function to partition the
tree nodes, rather than the information gain measure discussed in Sect. 3.3.4. The
Gini index, Gj = 1 − ∑

c∈C pc
2, measures the likelihood that a data point would

1http://cran.r-project.org/web/packages/randomForest.
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be incorrectly labeled if it were randomly classified according to the distribution of
labels within the node. The best possible binary split is the one which maximizes the
improvement in the Gini index. The relative importance of the various features for
classification may also be estimated using the Gini index. In the context of a neu-
roimaging application, this is valuable because it allows the assessment of whether
the features contributing most to the classifier correspond to regions or structures
with a biologically plausible connection to pathology. A measure of the importance
of an individual feature may be computed by summing the decreases in the Gini
index occurring at all nodes in the forest which are partitioned based on that feature.

Other aspects of the decision forest model presented in Chap. 3 are unchanged.
Axis-aligned weak learners were selected, tree predictions were combined using
a simple averaging operation, and trees were fully grown without pruning. Two
key parameters then remain to be selected: the forest size T , and the amount of
randomness, controlled by ρ. Their selection will be described later in Sect. 18.5,
along with the results of classification experiments.

In terms of the manifold learning step, there is one key difference from the man-
ifold forests described in Chap. 7. Here, classification forests are applied to derive
supervised pairwise similarity measures, with the aim of generating manifolds that
are optimal for the task of clinical group discrimination. Manifold forests are thus
applied to learn an embedding from labeled training data and then to infer the clin-
ical labels of test data mapped into this space. A binary affinity model was used to
compute the pairwise similarities between data points.

Classical multidimensional scaling (MDS) [368] was applied for manifold learn-
ing, rather than the Laplacian eigenmaps technique employed in Sect. 7.2.5. MDS
is commonly used to provide low-dimensional visualizations of similarity relation-
ships, including those derived from decision forests [154]. A detailed description of
MDS can be found in [73]. Like Laplacian eigenmaps, MDS derives a coordinate
embedding v′

i for the data points via an eigendecomposition. A goodness-of-fit pa-
rameter G, describing the extent to which the selected d ′ eigenvectors represent the
full similarity matrix, can be useful in selecting an appropriate dimensionality for
the embedding [231]. To generate an embedding that simultaneously incorporates
information from multiple modalities, the similarity matrices derived from the indi-
vidual modalities are additively combined, and MDS applied to the resulting joint
matrix. Multi-modality classification is then performed by applying a classification
forest to coordinates from this joint embedding.

18.4 Neuroimaging and Biological Data for Evaluation

The multi-modality classification framework described in the previous section is
evaluated using neuroimaging and biological data from 147 participants enrolled in
the Alzheimer’s Disease Neuroimaging Initiative (ADNI).2 This is a large, longitu-
dinal, multi-center study whose primary goal has been to test whether serial MRI,

2http://adni.loni.ucla.edu.
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Fig. 18.3 Imaging data. (a) Anatomical segmentation overlaid onto the corresponding structural
MRI. (b) Normalized FDG-PET overlaid onto a standard-space MRI

PET, other biological markers, and clinical and neuropsychological assessments can
be combined to measure the progression of MCI and early AD. The participants
whose clinical, neuroimaging and biological data are used for evaluation comprise
37 AD patients, 75 MCI patients, and 35 healthy controls (HC).

18.4.1 Neuroimaging features

Region-based features were extracted from the MR images based on automatic
whole-brain segmentations into 83 anatomical structures. These were prepared in
the native space of each MR image using multi-atlas propagation with enhanced
registration (MAPER) [159]. A typical example is shown in Fig. 18.3. Regional
volumes were normalized by the total intracranial volume, resulting in 83 volumet-
ric region-based features per image.

Voxel-based features were extracted from the FDG-PET images to allow demon-
stration that the multi-modality classification framework can readily combine dif-
ferent types of feature data. The FDG-PET images were transformed into a stan-
dard template space and smoothed to a common isotropic spatial resolution. Global
inter-subject variations in overall radioactivity were accounted for using a reference
cluster derived from an independent dataset [406]. A typical example is shown in
Fig. 18.3. A brain mask was applied to each normalized FDG-PET image to ex-
clude background, and signal intensities were extracted from each voxel, resulting
in 239,304 features per image.

Further details concerning the extraction of neuroimaging features can be found
in [142], which describes the application of our multi-modality classification frame-
work to neuroimaging data and in [143], for the Alzheimer’s Disease Neuroimaging
Initiative (ADNI).

18.4.2 Biological features

The ADNI Biomarker Core provides biological data for the study participants.
These data include CSF measures of β-amyloid, tau and phosphorylated tau, as
well as ApoE genotype information determined from a blood sample. Details of the
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Table 18.1 Single-modality
classification results based on
the application of a
classification forest to the
original feature data.
Balanced accuracies for each
modality are expressed as
mean (standard error)

AD versus HC MCI versus HC

CSF 76.8 (1.3) 63.8 (1.4)

MRI 81.8 (1.3) 68.9 (1.3)

FDG-PET 86.0 (1.2) 66.9 (1.3)

ApoE genotype 72.7 (1.3) 60.7 (0.9)

biofluid collection and processing are provided in [372]. The genetic feature data for
each participant consist of a single categorical variable describing their ApoE geno-
type. This categorical genetic feature takes one of five possible values: (ε3, ε3),
(ε3, ε4), (ε4, ε4), (ε2, ε3), (ε2, ε4).

18.5 Classification Experiments and Results

Classification performance is assessed between two clinically relevant pairs of di-
agnostic groups: AD patients versus HC, and MCI patients versus HC. Robust es-
timates of classifier performance are obtained using a repeated random sampling
approach. The mean balanced accuracies are evaluated over 100 runs in which 75 %
of the data are randomly selected for training, with the remaining 25 % used as test
data. The balanced accuracy treats both diagnostic groups with equal importance,
and is computed as the average of the sensitivity and specificity. Sensitivity mea-
sures the proportion of correctly identified patients, and specificity measures the
proportion of correctly identified controls.

Since the diagnostic groups are not of equal sizes, a stratified repeated random
sampling method is employed in which the training and test sets are selected such
that they contain examples from the two diagnostic groups in approximately equal
proportions to the full dataset. This produces results with a lower variance than
regular cross-validation [187].

As described in Sect. 18.3.2, the forest size T and amount of randomness, con-
trolled by ρ, must be selected before performing classification experiments. Sta-
ble estimates of the out-of-bag classification error are consistently observed for
T � 1,000, and we therefore use T = 5,000 for all experiments in the following
three sections. The value of ρ is observed to have little consistent effect on the out-
of-bag classification error estimate, and we therefore use ρ = √

d for all experiments
in the following three sections, following the recommendation of [222].

18.5.1 Single-Modality Classification Results

A classification forest is first applied to each set of feature data independently, and
the single-modality classification results obtained are presented in Table 18.1.
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Fig. 18.4 Feature importance for distinguishing between clinical groups. (a) AD versus HC based
on MRI. (b) MCI versus HC based on MRI. (c) AD versus HC based on FDG-PET. (d) MCI versus
HC based on FDG-PET

Estimates of the relative importance of the high-dimensional neuroimaging fea-
tures for classification are illustrated in Fig. 18.4 for both clinical group pairs. The
most important features for discriminating between clinical groups correspond with
those known to be visibly affected in AD on both FDG-PET and structural MR
imaging [150, 284]. Important features for distinguishing between AD patients and
HC are localized to affected areas, with the more challenging distinction between
MCI patients and HC requiring features spread across a larger part of the brain.

18.5.2 Single-Modality Similarity-Based Classification Results

The supervised classification forests described in the previous section are also used
to derive pairwise similarity measures for each of the four modalities, as described
for the unsupervised case in Chap. 7. Examples of the resulting similarity matrices
are shown in Fig. 18.5.

MDS is applied to each similarity matrix to generate a low-dimensional coordi-
nate embedding for each modality. As described in Sect. 18.3.2, a goodness-of-fit
parameter G, describing the extent to which the selected eigenvectors represent the
full similarity matrix, is used to determine an appropriate dimensionality for the re-
sulting embeddings. To reduce noise, while preserving similarity relationships, we
use G = 90 % to determine the dimensionality of all embeddings. A classification
forest is then applied to the embedded feature data from each of the four modalities
independently. The single-modality classification results obtained are presented in
Table 18.2.

No consistent differences are observed between the balanced accuracies based
on the embedded feature data shown in Table 18.2, and those based on the original
feature data shown in Table 18.1. This lack of difference in performance is expected,
since a classification forest is already a non-linear classifier.
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Table 18.2 Single-modality
classification results based on
the application of a
classification forest to the
embedded feature data.
Balanced accuracies for each
modality are expressed as
mean (standard error)

AD versus HC MCI versus HC

CSF 76.3 (1.3) 61.7 (1.3)

MRI 82.1 (1.4) 69.1 (1.4)

FDG-PET 86.5 (1.2) 60.2 (1.2)

ApoE genotype 72.7 (1.3) 60.7 (0.9)

Fig. 18.5 Similarity matrices for each of the four modalities for AD patients versus HC, and MCI
patients versus controls. For each modality, the matrices are symmetric, and each entry represents
the similarity between a pair of subjects based on the input feature data. (a) CSF. (b) FDG-PET.
(c) MRI. (d) ApoE genotype

18.5.3 Multi-modality Similarity-Based Classification Results

The supervised similarity measures derived from the individual modalities, as de-
scribed in the previous section, are additively combined to generate similarities that
simultaneously encode information from all features. The combination of four very
different types of data is facilitated by the use of classification forests, which provide
consistent pairwise similarity measures for multiple modalities. MDS is applied to
the joint similarity matrix, and a goodness-of-fit value of G = 90 % is again used
to determine an appropriate dimensionality for the combined embedding. A classi-
fication forest is then applied to the embedded feature data, and the multi-modality
classification results obtained are presented in Table 18.3. Classification based on
the joint embedding constructed using information from all four modalities out-
performs classification based on any individual modality for both experiments.

Although classification performance is commonly reported in terms of accuracy,
it is reported here in terms of the balanced accuracy because this provides a more
meaningful performance metric for diagnostic groups of unequal sizes. In terms of
accuracy, 89 % classification is achieved between AD patients and HC, and 75 %
between MCI patients and HC. These results are comparable with the 92 % and 93 %
accuracies reported between AD patients and HC in [162] and [417], respectively,
as well as the 76 % accuracy reported between MCI patients and HC in [417].
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Table 18.3 Multi-modality classification results based on the application of a classification forest
to the jointly embedded feature data. Balanced accuracies are expressed as mean (standard error)

AD versus HC MCI versus HC

CSF, MRI, FDG-PET, ApoE genotype 89.0 (1.2) 72.7 (0.8)

Fig. 18.6 Cobweb plots showing the distribution of parameters selected for classification. (a) AD
patients versus HC. (b) MCI patients versus HC. The four spokes of each plot represent the four
modalities, and each colored line connecting the four spokes represents a set of parameter val-
ues. The color and weight of each line represents the percentage of runs in which the associated
parameter set is selected

The joint similarity matrix W is defined as a linear combination of the similarity
matrices from each of the four modalities Wi . Each modality is assigned a weighting
factor αi , such that W = ∑4

i=1 αiWi , where
∑4

i=1 αi = 1. To ensure the best com-
bination of the four modalities for classification, the αi parameters are optimized
as part of the training process. This is achieved by performing a grid-search within
the training data, and selecting the set of parameters resulting in the highest cross-
validated accuracy. The classifier is then trained using this set of parameters, before
having its performance assessed on the test data.

For both classification experiments, the distribution of parameters selected over
the 100 runs is illustrated in Fig. 18.6. These visualizations provide interesting in-
sights into the relationships among the different modalities. For example, when dis-
tinguishing between AD patients and HC, it appears that FDG-PET and MR imaging
features provide the most complementary information. In this case, genetic informa-
tion appears to be less useful, in comparison. However, when distinguishing between
MCI patients and HC genetic information appears to have a relatively higher impor-
tance.

18.6 Conclusions

This chapter has described a framework within which manifold forests are used to
perform multi-modality classification of AD patients, MCI patients, and elderly cog-
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nitively normal individuals. The approach has been evaluated using neuroimaging
and biological data from a large multi-center study, including FDG-PET and MR
imaging data, CSF biomarker measures, and ApoE genotype information.

Classification based on multiple modalities is shown to out-perform that based
on any individual modality. This supports suggestions that there is some comple-
mentary information between the modalities which can be exploited to produce a
more powerful combined biomarker for AD [201, 394]. The results are compara-
ble with other state-of-the-art multi-modality classification methods such as multi-
kernel learning. Manifold forests provide a fast and flexible alternative approach,
which facilitates the combination of different types of image- and non-image-based
feature. Since classification forests extend naturally to multi-class problems, the
framework described in this chapter could be used for other applications, such as
differential diagnosis.



Chapter 19
Entanglement and Differentiable Information
Gain Maximization

A. Montillo, J. Tu, J. Shotton, J. Winn, J.E. Iglesias, D.N. Metaxas,
and A. Criminisi

Decision forests can be thought of as a flexible optimization toolbox with many
avenues to alter or recombine the underlying architectural components and improve
recognition accuracy and efficiency. In this chapter, we present two fundamental
approaches for re-architecting decision forests that yield higher prediction accuracy
and shortened decision time.

The first is entanglement, i.e. using the learned tree structure and intermediate
probabilities computed in nodes closer to the root to affect the training of other
nodes deeper in the trees. Unlike more conventional classifiers which assume that all
data points (even those neighboring in space or time) are IID, the entanglement ap-
proach learns semantic correlation in non IID data. To demonstrate, we build an en-
tangled decision forest (EDF) that exploits spatial correlation in human anatomy by
simultaneously labeling voxels in computed tomography (CT) scans into 12 anatom-
ical structures.

The second contribution is the formulation of information gain as a function that
is differentiable with respect to the parameters of the split node weak learner. This
provides increased confidence and accuracy of maximum margin boundary localiza-
tion and reduces classification time by using a few, shallow trees. We further extend
the method to incorporate training label confidence, when available, into the infor-
mation gain maximization. Due to bagging and random feature subset selection,
we can retain decision forest virtues such as resiliency to overfitting. To demon-
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strate, we build a gradient ascent decision forest (GADF) that tracks visual objects
in videos. For both approaches, superior accuracy and computational efficiency is
shown in quantitative comparisons with state of the art algorithms.

19.1 Introduction

As discussed in Part I of this book, decision forests are a flexible framework for
addressing diverse tasks, with many avenues to alter or recombine the underlying
architectural components to improve accuracy and efficiency. In this chapter, we
present two fundamental approaches for re-designing the decision forest. These lead
to improved prediction accuracy, increased confidence and accuracy of maximum
margin boundary localization, and reduced decision time and memory requirements
for real world applications including semantic segmentation of 3D medical images
and tracking objects in video.

19.2 Entangled Decision Forests

Our first approach, a re-architecting of decision forests, is the entanglement or shar-
ing of information between the nodes in a decision forest. In entangled decision
forests, the result of the binary tests applied at each tree node depends on the re-
sults of tests applied earlier during forest growth. This concept was first presented
in [252] and later refined with context selectivity [250]. This chapter presents a more
general exposition than reported previously, enabling the most broad interpretation
and application.

Entanglement is the use of the learned tree structure and intermediate probabil-
ities associated with nodes in the higher levels of a tree to affect training of split
nodes in deeper levels of the forest. In its simplest incarnation one may think of en-
tanglement as using the class posteriors of previously trained nodes as input feature
into the training of subsequent nodes in the same tree.

A traditional assumption of many classifiers is that all data points (e.g. pixels in
an image) are independent and identically distributed (IID). However, in many appli-
cations, this assumption is incorrect; many data points are in fact highly correlated
and thus non IID. Entanglement automatically learns the semantic structural pattern
of this correlation and encodes it in the features chosen during decision tree training.
In practice, this correlation tends to occur over time, space or both. For example, in
3D medical image segmentation, human anatomy defines a canonical 3D configu-
ration (correlation) over 3D space. In other cases, such as 4D medical scans, the
correlation can be in both space and time (the fourth dimension). In entanglement,
a tree node, j , at level, �, in the forest is constructed by designing entanglement
features that exploit the uncertain partial contextual information learned (or at test
time, inferred) in a correlation neighborhood by the previous � − 1 levels of the for-
est (already trained). We call a forest that uses such features an entangled decision
forest (EDF).
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As an additional contribution, we randomly sample feature types and parameters
from learned, non-uniform proposal distributions rather than from a uniform dis-
tribution used (implicitly) in previous decision forest research [5, 44, 77, 128, 212,
341, 411]. With this modification in place, the random draws from the proposal
distribution select, with greater probability, the feature types and parameters that
tend to be relevant for classification. As we will demonstrate, this allows for higher
accuracy for the same number of features evaluated during training. Entanglement
and learned proposal distributions allow faster training, and faster, more accurate
prediction.

To illustrate entanglement, we discuss an example application where we wish to
automatically segment a 3D Computed Tomography (CT) scan into its anatomical
components such as the aorta, pelvis, and the lungs. We cast this task as a voxel
classification problem which we solve via an EDF. In this case entanglement allows
the class posteriors of voxels reaching nodes deep in the tree to depend directly from
the intermediate posteriors attained higher up in the same tree. This improves accu-
racy and captures long-range semantic context. Previously, segmentation constraints
in the form of semantic (e.g. anatomical) context have been applied, but these have
required either a separate random field [342] or multi-pass processing [341, 375];
EDFs achieve this in one pass with no additional methods.

19.2.1 Entanglement Feature Design

We assume we are given a set, S = {(v, c)}, of voxels, v = (i,p), each consisting of
its image intensity, i, (a measure of tissue density in the case of CT) voxel location
p and ground truth label, c. This set is formed from the collection of voxels from
a group of training CT scans. Our goal is to infer the probability of each label for
each voxel of unseen test scans.

Following the work in [78] we construct two types of long-range, context-aware
feature. The first type captures “appearance context”, the latter are entangled and
capture “semantic context”. See also Chap. 15. Details are explained next.

19.2.1.1 Appearance Features

Using the intensity image, J , we construct intensity features for each voxel v that
are spatially defined by (1) their position, p, centered on the voxel to be labeled
(Fig. 19.1a), and (2) one or two cuboidal probe regions, F1 and F2, offset by dis-
placement vectors, Δ1 and Δ2, which can be up to 200 mm in each dimension
(x, y, z). A probe region, F(q;w), is the set of voxels within the region centered
at q with side lengths, w. We construct two variants of intensity features. The first
variant consists of the mean CT intensity at a probed region, F1 (Fig. 19.1a, left),
while the second consists of the difference in the mean intensity of regions, F1 and
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Fig. 19.1 Intensity and entanglement features. (a) Intensity features measure image information
from regions offset from the reference voxel at p. (b) MAPCLASS feature retrieves the label that
the classifier currently predicts at location p1 offset from p. We maintain a node index array which
associates with each voxel the current tree node ID (represented by the number in each voxel). (c,
top) The array allows to determine the current label posterior in the tree for the voxel at location
p1. (c, bottom) Conceptually, the tree induces a vector image of class posteriors which we use
when designing MAPCLASS and TOPNCLASSES features

F2 (Fig. 19.1a, right). Then split functions are defined from these as follows:

hINTENSITY(v, θ j ) = [
J̄
(
F1(p + Δ1)

)
> τ

]
, (19.1)

hINTENSITYDIFF(v, θ j ) = [
J̄
(
F1(p + Δ1)

) − J̄
(
F2(p + Δ2)

)
> τ

]
. (19.2)

During training, each type of split function is characterized for node j by the split
parameters θ j = (φ, τ ). For hINTENSITY, φ includes the parameters of F1: the offset
Δ1, the size w1 and an intensity threshold τ . For hINTENSITYDIFF, φ includes the
additional parameters Δ2 and w2. These parameters are sampled randomly during
training for each split node. Once training has finished, the maximum information
gain node test along with its optimal features are frozen and stored within the node
for later use during testing.

19.2.1.2 Semantic Context Entanglement Features

We now describe an instance of our entanglement contribution. During testing on
novel images, we exploit the confident voxel label predictions (peaked distributions)
that can be found using early levels of the forest to aid the labeling of nearby voxels.
This provides semantic context similar to auto-context [341, 375], but does so within
a single forest. We define four types of long-range entanglement feature to help train
the node currently being grown using knowledge learned in already trained nodes
of the forest. Two features (MAPCLASS and TOPNCLASSES) are based on the
posterior class distribution of the nodes corresponding to probed voxels, and two
(NODEDESCENDANT and ANCESTORNODEPAIR) are based on the location of the
nodes within the trees.
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Fig. 19.2 Further entanglement features. (a) Node index array associates voxels with intensity and
tree node indices (same format as Fig. 19.1b but for a deeper tree level). (b) NODEDESCENDANT

feature tests whether probe voxel at p1 descends from a node (j0 in this case). (c) ANCESTORN-
ODEPAIR feature tests whether the nodes of voxels p1 and p2 have a common ancestor < τ levels
away

MAPCLASS Entanglement Features As the name suggests, this type of feature
uses the maximum a posteriori label of a neighboring voxel at p1 to reduce uncer-
tainty about the label at p (Fig. 19.1b). When such semantic context is helpful to
classify the voxel at p, the feature yields high information gain and may become
the winning feature for the node during tree growth. The MAPCLASS split function
tests whether the MAP class in the posterior of a probed voxel p1 = p +Δ1 is equal
to a particular class c�:

hMAPCLASS(v, θ j ) =
[
arg max

c
p
(
c; j (p1)

) = c�
]
. (19.3)

The parameter θ j includes φ = (Δ1, c
�) while p(c; j (p1)) is the posterior class

distribution of the node of p1 denoted j (p1). This posterior can be retrieved from
the tree because (1) we train and test voxels in breadth-first fashion, and (2) we
maintain an association between voxels and the tree node ID at which they reside
while moving down the tree. This association is a node index array (Fig. 19.1b).

TOPNCLASSES Entanglement Features Similarly we define features, called
TOPNCLASSES, where N ∈ {2,3,4}, that generalize the MAPCLASS feature.
A TOPNCLASSES feature tests whether a particular class c� is in the top N classes
of the posterior class distribution of the probe voxel at p1 = p + Δ1. The split func-
tion, with parameter θ j including φ = (Δ1,N, c�) is defined as

hTOPNCLASSES(v, θ j ) = [
c� ∈ top N classes of p

(
c; j (p1)

)]
. (19.4)

NODEDESCENDANT Entanglement Features This type of feature tests whether
a region near voxel p has a particular appearance. The neighboring region is centered
at voxel p1 (Fig. 19.2a, b). The split test is whether the node currently corresponding
to p1 descends from a particular tree node, j0. If it does, then we know p1 has
satisfied the appearance tests at nodes (j1 . . . jk) above j0 in the tree in a particular
way to arrive at j0.
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ANCESTORNODEPAIR Entanglement Features This type of feature tests
whether two regions near voxel p have passed similar appearance and semantic
tests. The neighboring regions are centered at voxels p1 and p2 (Fig. 19.2a). The
split test is whether the nodes currently corresponding to p1 and p2 have their first
common ancestor < τ tree levels above the current level (Fig. 19.2c). The thresh-
old controls the required degree of similarity: the lower τ , the greater the required
appearance and context similarity needed to pass the test, because the lower τ , the
larger the number of tests with identical outcomes above the common ancestor.

19.2.2 Guiding Feature Selection by Learned Proposal
Distributions

This section describes the use of learned proposal distributions. These distributions
aim to match the feature types and their parameters proposed at each tree node
during training to those that have proven to be most useful for classification in a
previous training run. The decision forest still chooses the winning feature, but each
node chooses from features sets that are likely to be useful based on prior expe-
rience. Specifically, we train an initial decision forest, Ftemp, on our training data,
using a uniform proposal distribution. We then record (as histograms) the distribu-
tion of accepted feature parameters and feature types across all tree nodes in the
forest. Ftemp is then discarded, and we then use parameter distributions as the pro-
posal distributions in a subsequent training of the next decision forest. While this
requires additional training, it imposes no time penalty for prediction. This process
could be repeated, though in practice even just one iteration has proven sufficient
for a substantial improvement in accuracy (e.g. > 5 %).

The learned displacements tends to be Gaussian distributed and centered on the
reference voxel (Fig. 19.3 top row). Acceptance distributions of the remaining pa-
rameters, such as the thresholds τ or the choice of the MAPCLASS class c�, also
have non-uniform distributions (Fig. 19.3 bottom row). Similarly, the distribution
of feature types for each tree level is learned. Drawing feature types from this dis-
tribution can also improve classifier accuracy. Figure 19.4a shows how the ratio of
feature types varies with tree depth. As the tree is grown, entanglement features in-
creasingly dominate the scene over the more conventional intensity features. The
entangled features used by the nodes in the lower part of the tree exploit semantic
context and neighborhood consistency inferred from appearance features of earlier
levels.

19.2.3 Results

We evaluate our EDF model on the task of segmenting a database of 250 varying
field of view CT scans. Each voxel in each CT scans needs be assigned one of 12
class labels from the following set of anatomical structures of interest {heart, liver,
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Fig. 19.3 Learned parameter distributions are clearly non-uniform. (Left) Learned displacement
and anatomical class distributions for MAPCLASS feature. (Right) Displacement and intensity
difference distributions for INTENSITYDIFF feature

Fig. 19.4 An EDF reveals how and what it has learned. (a) Learned relative proportion of feature
types chosen at each level of forest growth. (b) Location and organ class of the top 50 features
used to identify heart voxels. The hand-drawn regions here group these locations for different
MAPCLASS classes c�

spleen, aorta, l./r. lung, l./r. femur, l./r. pelvis, l./r. kidney} or the background class.
This database has been designed to include wide variations in patient health status,
field of view and scan protocol. We randomly selected 200 volumes for training and
50 for testing.

Qualitative Results The EDF achieves a visually accurate segmentation of
organs throughout the 50 test volumes. Example segmentations are shown in
Fig. 19.5a where the first column is the ground truth segmentation, and the sec-
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Fig. 19.5 Qualitative segmentation results. (a) The use of entanglement and learned proposal
distributions (column 2) improves accuracy compared to not using them (column 3). The rows
show four different subjects. (b) EDF segmented left lung distorted by enlarged aorta; volume
rendering in lower right. (c) EDF accurately segments a right lung despite a severe tumor

ond column is the EDF result. We see good agreement for the lungs (blue), liver
(orange), spleen (green), kidneys (purple), femur (tan), and heart (dark brown). Col-
umn 3 shows the result using our decision forest without entanglement and with
uniform proposal distributions. Entanglement with proposal distributions noticeably
improves the lungs, aorta (red), kidneys, spleen, femur, and heart.

The algorithm handles many complexities commonly found in the clinic. For
example, our algorithm correctly segmented the lung despite the case of a severely
enlarged aorta (Fig. 19.5b) and another with a tumor (Fig. 19.5c).

Quantitative Impact of Each Contribution For a quantitative analysis we mea-
sured segmentation accuracy across all 50 test scans using the average class Jaccard
similarity coefficient [100]. The metric is the ratio of the intersection size (ground
truth and predicted labels) divided by the size of their union. While EDF achieves
> 97 % average voxel accuracy throughout our database, we use the Jaccard metric
because we feel it is a more reliable metric of segmentation accuracy.

To understand the impact of using the acceptance distributions as proposal distri-
butions (Sect. 19.2.2), we trained the decision forest in four different ways: (1) using
uniform feature type and uniform feature parameter distributions for baseline per-
formance (light blue curve, Fig. 19.6a), (2) using learned feature type distribution
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Fig. 19.6 Quantitative impact of each contribution. (a) Learning proposal distributions for both
feature types and feature parameters increases accuracy. (b) Entanglement (dark blue) provides
greater accuracy and prediction speed than auto-context (green). Note: the green curve should
properly be plotted at depths 20–38, but for ease of comparison we plot it at depths 1–19

with uniform feature parameter distributions (red), (3) using uniform feature type
distributions with learned feature parameter distributions (green), (4) using learned
feature type and learned parameters distributions (dark blue). Learning only the fea-
ture type distribution yields a negligible improvement to baseline (red vs. light blue).
Learning feature parameter distribution boosts accuracy significantly (green vs. red).
Learning both yields the best performance boosting accuracy over baseline by 8 %.

We compared our method to auto-context [341, 375] by conducting four exper-
iments. First, we trained our decision forest 20 levels deep without entanglement
and without auto-context for a baseline (red, Fig. 19.6b). Second, we trained a two-
round, auto-context decision forest (ADF) using 10 levels in each round (light blue).
Third, we trained another ADF, but this time with an equal modeling capacity to the
baseline by using two rounds with 19 levels each (green). Fourth, we trained the
proposed EDF method as a single, 20 level deep forest using entanglement (dark
blue curve). We find considerably better accuracy using the EDF method (dark blue
vs. green). In addition to beating the performance of ADF, it reduces the prediction
time by 47 % since the EDF requires 18 fewer levels (20 vs. 38).

Efficiency Considerations With a parallel implementation, EDF segments vol-
umes (512×512×424) in just 12 seconds per volume using an 8 core Xeon 2.4 GHz
computer with 16 GB RAM. This speed is equal to or better than state of the art sin-
gle organ methods [419], yet we segment multiple (12) organs simultaneously.

Inspecting the Chosen Features Figure 19.4b shows how the MAPCLASS fea-
ture learns to segment a heart voxel located at the cross-hair. To find the top con-
tributing semantic context features, we express information gain as a sum of the
information gain from each class:

I (S, θ) =
∑

c∈C

(
−p(c|S) logp(c|S)+

∑

i∈{L,R}

( |S i |
|S| p

(
c|S i

)
logp

(
c|S i

)))
, (19.5)
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where S is the set of voxels being split into partitions SL and SR, and c is the index
over classes. We can then readily rank the learned node features based on how much
they contributed to classifying the voxels of a given class (e.g. heart) by increasing
the information gain for that class.

19.3 Differentiable Information Gain Maximization

In Sect. 19.2 we simultaneously increased classification accuracy and reduced de-
cision time using entanglement which propagates knowledge from one part of the
forest to another. In this section we achieve a similar result using a complementary
approach. This second approach optimizes training by applying gradient ascent to
differentiable information gain. Finding the optimum parameters for the split tests
has traditionally [302] been achieved via exhaustive discrete search to find those
parameters which maximize information gain. For a given computational budget,
exhaustive search is limited to a small region of parameter space or a coarse quanti-
zation of a wider region.

By making information gain differentiable, we can directly find the optimal data
partition for the given input subset and node feature subset. This produces more
compact decision trees which in turn reduces classification (test) time and memory
requirements. Through the use of random input (bagging) and feature subset selec-
tion, decision forest virtues including independent trees and resiliency to overfitting
can be retained.

Using non-differentiable information gain, an optimal solution can be found
by simulated annealing techniques [158, 260], though this can be computation-
ally impractical in high dimensional feature spaces. Alternative discriminative cri-
teria could be optimized, such as LDA [246], SVM [383], or boosting techniques
[374, 413], but these may not provide the optimal data partitions when the data
distributions are from many classes.

As discussed in Sect. 3.3, binary tests based on parameterized functionals (such
as hyperplanes or conic sections) are stronger learner models than coordinate
aligned split functions, and can have greater generalization capabilities. We show
below that our differentiable information gain forest both accepts these more pow-
erful split functions and improves their generalization power to approximate the
maximum margin decision boundary (see also [80] for a detailed discussion about
maximum margin behavior in decision forests). Like [173], we impose a soft split
using a sigmoid function; however, we explicitly present the derivation absent in
[173], and extend it to include label confidence when training data include label un-
certainty. We also incorporate hyperplane and non-linear split tests in the gradient
ascent framework.

We call the resulting classifier a gradient ascent decision forest (GADF) and il-
lustrate its power in both synthetic and real-world examples. First, we investigate the
impact of the GADF for a synthetic 2D classification task, and demonstrate that gra-
dient ascent reduces classification time, increases prediction accuracy and increases
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confidence in the estimation of the maximum margin decision boundary, compared
to the standard decision forest. Second, we implement a GADF to solve classifica-
tion problems in several application domains including mass spectrometry, biome-
chanics, botany, image classification and 1D signal processing. We demonstrate how
the GADF approach increases prediction accuracy across this application spectrum.
Third, we cast visual object tracking as an iterative classification task and train a
gradient ascent classifier to perform object tracking in public PET videos. We show
how the approach avoids tracker drift and handles severe occlusions better than state
of the art trackers.

19.3.1 Formulating Differentiable Information Gain

Given the labeled dataset S = {(v, c)} of size N , where v is the feature data of
dimension d , and c = ς(v) is the ground truth class label of v (with c ∈ {1, . . . ,C}),
the Shannon entropy of the class distribution can be computed as

H(S) = −
C∑

c=1

p(c|S) logp(c|S), (19.6)

where

p(c|S) =
∑

v[ς(v) − c]
N

(19.7)

defines the data class distribution and [·] is the indicator function.
Given a binary split function (weak learner) h(· , ·), we can partition the data into

two subsets (see Sect. 3.2.3):

SL = {S|h = 1} = {
(v, c)|v ∈ S, h(v; θ) = 1

}
(19.8)

of size NL and

SR = {S|h = 0} = {
(v, c)|v ∈ S, h̄(v; θ) = 1 − h(v; θ) = 1

}
(19.9)

of size NR = N − NL. The information gain defines the entropy change before and
after the split h is applied:

I (S|h) = H(S) − H(S|h), (19.10)

where the entropy after partitioning is computed as

H(S|h) = NL

N
H

(
Sh

) + NR

N
H

(
S h̄

)
. (19.11)

Information gain is a typical measure for selecting discriminative weak learners in
decision tree training as described in Chap. 3. However, the information gain for-
mulation is not differentiable w.r.t. the parameters θ of h, making analytical opti-
mization problematic.
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To make I (S|h) in (19.10) differentiable w.r.t. the binary test h, we first define
the split function h for data point v as a parameterized functional:

hψ (v; θ) =
{

0, ψ(v; θ) < 0,

1, ψ(v; θ) ≥ 0,
(19.12)

where ψ(v; θ) is the geometric split function of feature space with parameter set θ .
The partition occurs at the boundary ψ(v; θ) = 0.

We then define partition integrals for each class for all data w.r.t. h as follows:

US
c (h) =

∑

v

h(v; θ)
[
ς(v) − c

]
, c ∈ {1, . . . ,C}, (19.13)

US(h) =
∑

v

h(v; θ), (19.14)

where h(v; θ) can be replaced with h̄(v; θ) = 1 − h(v; θ) as needed.

We can then define NL = US(h), NR = US(h̄), N = NL+NR, pc(Sh) = US
c (h)

US (h)

and pc(S h̄) = US
c (h̄)

US (h̄)
, and the entropy after partition by h is

H(S|h) = − 1

N

(∑

c

US
c (h) logUS

c (h) − US(h) logUS(h)

+
∑

c

US
c (h̄) logUS

c (h̄) − US(h̄) logUS(h̄)

)
. (19.15)

Using the chain rule, the derivative of information gain w.r.t. θ is

∂I

∂θ
= −∂H(S|h)

∂θ

= 1

N

(∑

c

U ′S
c (h)

(
logUS

c (h) + 1
) − U ′S(h)

(
logUS(h) + 1

)

+
∑

c

U ′S
c (h̄)

(
logUS

c (h̄) + 1
) − U ′S(h̄)

(
logUS(h̄) + 1

))
, (19.16)

where U ′S
c (h) = ∑

v
∂h(v;θ)

∂θ [ς(v) − c], c ∈ {1, . . . ,C}, and U ′S(h) = ∑
v

∂h(v;θ)
∂θ .

Information gain is not differentiable w.r.t. the binary test parameter θ because
hψ (v; θ) in (19.12) is not differentiable. To make it differentiable, we approximate

the weak learner h by a sigmoid function hψ (v; θ) = 1/(1 + e
−ψ(v;θ)

σ ) to get:

∂hψ (v; θ)

∂θ
= 1

σ
hψ (v; θ)

(
1 − hψ (v; θ)

)∂ψ(v; θ)

∂θ
. (19.17)

Combining (19.16) and (19.17) allows us to compute the derivative of informa-
tion gain w.r.t. the binary test function parameter θ using the chain rule. The split
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function ψ(v; θ) can be designed according to the purpose of information gain op-
timization. It is worth noting that the parameter σ defines the fidelity of the binary
test, and controls the smoothness of the information gain surface in the decision
boundary parametric space. One may apply annealing to σ when doing gradient
ascent (i.e. letting σ → 0) so that the chance that the optimization reaches global
maxima can be increased.

Soft Label Decision Forests If each training data point v also includes a (train-
ing) class label probability measure qc(v), then we define a confidence score
γ (v) ∈ [0,1] as a function of the label log-likelihood l(v) = log(

qc(v)
1−qc(v)

) as follows:

γ (v) = 2

1 + e
−

√|l(v)|−tl
σl

. (19.18)

The intuition is that the label is less confident if the class probability ratio is too
close to 1 (and thus

√|l(v)| approaches zero), and σl controls how sensitive the
confidence score is to the log-likelihood-ratio score. Such class label probability
measures occur naturally in tasks such as video processing. In this case an on-line
model learning may be applied per frame. Given the classification model trained
on-line using the previous frames, the new observations in the current frame may
be labeled with likelihood confidence (soft labels), and become the training data for
the on-line model updating for the current frame. In [52], such ‘soft label decision
forests’ are used for on-line tracking in videos where labels are quantized into a
histogram and a standard node training procedure is applied.

We provide an analytic solution for the soft label decision forests learning prob-
lem. By modeling the label confidence measures based on how much the label like-
lihood deviates from the decision threshold, we derive a differentiable information
gain formulation weighted by the label confidence. Our gradient ascent optimization
technique can then be applied to find the optimal data split based on the informa-
tion gain criteria with respect to the known class labels. Specifically, to optimize
the information gain with emphasis on data v labeled with high confidence, we can
simply derive the differentiable information gain by weighting the terms in (19.13)
with the confidence measure:

US
c (h) =

∑

v

h(v; θ)
[
ς(v) − c

]
γ (v), c ∈ {1, . . . ,C}, (19.19)

US(h) =
∑

v∈S
h(v; θ)γ (v). (19.20)

19.3.2 Split Function Design and Gradient Ascent Optimization

In training a classification forest, we solve for a decision boundary, ψDF(S; θDF),
optimally partitioning the data S with maximal information gain:
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Fig. 19.7 Gradient ascent can improve the location and confidence in the maximum margin de-
cision boundary and reduce classification time. Top row: discrete optimization using: (a) 1 tree,
(b) 10 trees, (c) 100 trees. Bottom row: discrete optimization followed by gradient ascent opti-
mization using: (d) 1 tree, (e) 10 trees, (f) 100 trees

θ∗
DF = arg max

θDF

I
(
S|h(v; θDF)

)
, (19.21)

where θDF is the concatenated vector of the binary test parameters θ at each tree
node.

The classic decision forest [44] uses a univariate split test, which consists of a
threshold τ of the kth feature element of v. We can denote this partitioning bound-
ary function as ψ = g0(v; θ) = vk − τ with θ = θ0 = {k, τ }. Such a boundary is
well suited for fast discrete search via maximizing I . However, the boundary co-
ordinate alignment in feature space can require many binary tests to make the joint
decision boundary ψDF(S; θDF) approximate the maximum margin class separation
boundary (as discussed in Chap. 3). An alternative is to approximate the maximal
margin decision boundary using far fewer but stronger weak learner models, such
as hyperplanes or conic functions, and this is especially true if differentiable infor-
mation gain is used. This is vital since maximum margin fidelity is likely to endow
the forest with superior generalization properties.

To illustrate, Fig. 19.7 shows synthetic 2D data points from three classes (red,
yellow, green) and the resulting partitions of a 2D feature space (x1, x2) by different
decision forests architectures. The top row shows the results of applying a conven-
tional classification forest. The bottom row shows the results (for corresponding for-
est size) of a classification forest using our differentiable information gain. While it
has been shown in [80] (and in Chap. 4) that when a large number of trees are used
the maximum margin class boundaries can be found, in practice, a small number
of trees is typically preferred for either classification runtime efficiency or memory
constraints. A comparison between the two rows in Fig. 19.7 shows that our new
formulation of information gain allows forests to approximate maximum margin
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behavior accurately even with just a few trees. In fact, in each column, showing the
results on various number of trees, we see an improvement in the maximum margin
boundary.

In detail, Fig. 19.7a shows the result of a decision forest with 1 tree and oriented-
line weak learners. We observe that the decision boundary does not approximate
well the maximum margin decision boundary. Averaging the output of 10 trees,
Fig. 19.7b, starts to improve the location of the class boundary. Using 100 trees
Fig. 19.7c provides a reasonable approximation to the maximum margin location
and a smooth transition class posterior.

Using gradient ascent optimization yields improved location of the class bound-
ary even for just one tree (Fig. 19.7d). Here, the method is initialized with the result
from Fig. 19.7a. Figure 19.7e shows the result when the output from 10 gradient as-
cent trained trees are averaged. Compared to Fig. 19.7b we can see the confidence in
the correct maximum margin boundary location is improved and a smoother poste-
rior. Similarly, when the output from 100 gradient ascent trained trees are averaged
in Fig. 19.7f, an improvement in the confidence of the correct maximum margin
decision boundary is still observed.

The improvement in maximum margin fidelity obtained by using GADF can pro-
vide additional generalization when training data are limited, which is often the
case in practice. The use of fewer trees also substantially speeds up classification
time, since each gradient ascent trained tree does not require additional time to test
yet provides increased accuracy. For example, the gradient ascent based result in
Fig. 19.7e has similar maximum margin fidelity to the non-gradient ascent result
in Fig. 19.7c yet requires 10 times fewer trees. In additional 2D synthetic tests we
have also observed a large capture range (basin of convergence) for both oriented
hyperplane and conic weak learners when using GADF.

With this motivation for differentiable information gain, we derive the gradient
of two useful binary tests for gradient ascent as follows:

Hyperplane Partition Binary test functionals in the form of hyperplanes for the
training of decision forest can be defined as ψ(v; θ) = g1(v; θ) = θ�[v

1

]
where θ =

θ1 = [θ(1), θ (2), . . . , θ (d+1)] ∈ R
d+1 may be directly incorporated into the proposed

gradient ascent information gain optimization where we can show that

∂ψ

∂θ
=

[
v
1

]
. (19.22)

Hyper-Ellipsoid Partition Binary tests with hyper-ellipsoid split functionals in
R

d can be defined as ψ(v; θ) = g2(v; θ) = 1 − (v − v0)
�Q(v − v0) where v0 is the

ellipsoid center, and Q defines the semi-axes lengths and orientations. To incorporate
into our gradient ascent information gain optimization, we have

∂ψ

∂v0
= −2(v − v0)

�Q and
∂ψ

∂Q
= (v − v0)(v − v0)

� (19.23)

with the optimization subject to Q> 0.
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To train each node using gradient ascent information gain optimization, an initial
estimate of the split function parameters can be chosen by random guess or discrete
optimization in discrete parameter space. For example, for hyperplanes we find the
best simple binary test with parameter θ∗

0 = {k∗, τ ∗} by discrete search and then set

the initial guess θ1 = [0, . . . ,0, θ
(k∗)
1 = 1,0, . . . ,−τ ∗]�. Given the formulation and

initial guess, we can conveniently implement the gradient ascent optimization by
adopting existing off-the-shelf gradient ascent optimization toolboxes (i.e. fmin-
unc() in Matlab with default options).

19.3.3 Object Tracking via Information Gain Maximization

Reliable visual tracking of a target object is difficult as many confusing factors need
to be addressed including: occlusions, distractions from background clutter, and ob-
ject appearance variations. We cast object tracking as an iterative classification prob-
lem [9, 11, 139, 178], and model the on-line appearance model update and tracking
as a sequential process of information gain maximization that partitions the pixels in
feature space (image features) and in image space (incorporating pixel coordinates
as additional features) iteratively. Various decision forest based visual trackers have
been proposed in the literature. A popular approach is to use classification forests
to construct an appearance likelihood model that is updated on-line in the current
frame and evaluated for the next frame. Tracking is achieved by finding the maxima
of the confidence map for the next frame by picking the centroid. As shown in [317],
the on-line decision forest model based visual tracker consistently outperformed that
based on an on-line Adaboost model. In [120], the concept of Hough forests is pro-
posed. With Hough forests, the target center is detected and tracked by the fusion of
generalized Hough transforms that are based on the codebook classification of lo-
cal image patches. Also, Chap. 12 and Chap. 16 provide further forest-based video
tracking algorithms.

Our approach is substantially different from the previous approaches. We con-
sider the tracking as an information gain maximization process (Gain-Max tracking)
in pixel XY-coordinate space. By parameterizing the target shape with an ellipsoid,
the tracking of the target location and scale can be achieved by maximizing the dif-
ferentiable information gain via gradient ascent techniques. We note that while we
train a forest for each frame, the amount of data is small and thus a forest can be
trained quickly. Realtime computation can be achieved by sacrificing some model
optimality (i.e. limiting the number of trees), or by adopting on-line decision forest
learning techniques [317].

Given an image J , we define a region of interest as Ω(J ) and denote the target re-
gion as Ω+(J ) and background region Ω−(J ) such that Ω(J ) = Ω+(J )∪Ω−(J ).
The pixel feature vector at location p is a d dimensional vector denoted J (p) ∈ R

d

where J has channels for textures, RGB colors, gradients, and wavelets. We denote
target and background pixel labels as {F,B}. We use information gain maximiza-
tion in two ways: first, to learn to discriminate foreground from background based
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on pixel appearance (feature space) and second, to track the target in the pixel XY-
coordinate space (image space). These are explained next.

GainMax in Feature Space: Updating the Appearance Model To discriminate
foreground from background pixels, we train a two-category pixel classifier that
assigns pixels with a label from {F,B}. When information gain maximization is
achieved, solving (19.21) the classifier learns the image features that best separate
the training data: SJ = {(J (p), ς(p)) | p ∈ Ω(J ), J (p) ∈ R

d, ς(p) ∈ {F,B}} into
foreground and background. The features are computed directly from the image
while the target and background labels come from a prior frame (the initial frame
is assumed manually labeled). For example, we can obtain the label of the pixel at
location p as

ς(p) =
{
F if p ∈ Ω+(J ),

B if p ∈ Ω−(J ).
(19.24)

GainMax in Image Space: Tracking the Target Further optimization of the
foreground and background is possible if we take into consideration each pixel’s
XY-coordinates in image space in addition to the pixel foreground and background
labels output from the previous step’s two-category classifier. We denote such
a training dataset as SΩ(J ) = {(p, ςDF(J (p))) | p ∈ Ω(J )} where {ςDF(J (p)) ∈
{F,B} | p ∈ Ω(J )}. To solve, we find the optimal partition boundary hψ (p; θ∗)
that achieves maximal information gain. Intuitively, the optimal split function
ψ(p; θ∗) = 0 should match the target region boundary. The solution can again be
found by solving (19.21) using gradient ascent, but with the target boundary func-
tion being parameterized based on the predefined target shape model, i.e. a 2D el-
lipsoid. As {ςDF(J (p))} is estimated by the on-line trained classification forest in
feature space with probability qς (J (p)), we can perform tracking by optimizing the
confidence weighted information gain formulation derived in (19.15) and (19.19).

19.3.4 Results

19.3.4.1 Classification of Public Machine Learning Datasets

To evaluate the gradient ascent decision forest (GADF), we compare its performance
to those of commonly used classifiers including a reference standard Adaboost im-
plementation and a decision forest with oblique hyperplanes. We denote these clas-
sifiers as follows:

Adaboost A standard Adaboost classifier that uses axis-aligned stumps as decision
functions. This is used as a baseline reference for comparison.

StumpDF A standard decision forest classifier with an oblique hyperplane for the
binary test. The optimal binary test is searched by randomly drawing 20 hyperplane
samples in the feature space.
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Table 19.1 Comparison of classification equal-error rate for Adaboost, StumpDF and GADF on
public datasets

Dataset Name #sample # fea. #Train:#Test Adaboost StumpDF GADF

Arcene 200 10000 1:1 0.25 0.318 0.240

Vertebral Column 310 6 3:7 0.157 0.175 0.170

Iris 150 2 1:4 0.281 0.010 0.000

Cardiotocography 2126 23 3:7 0.021 0.022 0.019

Breast Cancer
Wisconsin

569 32 1:1 0.056 0.048 0.043

GADF Similar to the StumpDF, but gradient ascent information gain optimization
is also used during training, using the hyperplane with best performance of the ran-
domly drawn 20 planes. Assuming the data are always normalized into standard
deviation along each dimension, we do gradient ascent information gain optimiza-

tion by gradually reducing the annealing parameter σ starting from 0.03
1√
d (where

d is the feature dimension of the data) with multiplicative scaling factor 0.7. The
annealing stops when the optimization converges.

We train both StumpDF and GADF with 10 trees and we train the trees by ran-
domly sampling 90 % of the original training set. When training each tree node, we
search for the optimal split parameters in a randomly sampled feature subspace with
dimension number ceil(

√
d). We limit the maximal tree depth to 15. To evaluate the

three methods, we compare their performance over a variety of different applica-
tion domains using publicly available standard datasets used throughout the ma-
chine learning community [111, 377]. We select five datasets, including: Arcene
(where the application is mass spectrometry), Vertebral Column (biomechanics),
Iris (botany), Cardiotocography (1D signal processing), and Breast Cancer Wis-
consin (cell image classification). We used the given train and test datasets when
they are explicitly provided and divide the dataset into different ratios to evaluate
generalization, as shown in Table 19.1, when they are not given. We also reduced
Iris to only the first two features to make the test more challenging. The table sum-
marizes the classification equal-error rates for the three methods, averaged over five
experimental runs for each method. We observe that in nearly every case, GADF
outperforms StumpDF as well as the reference standard Adaboost.

19.3.4.2 Object Tracking in Videos

In Sect. 19.3.3 we embedded GADF into a full-fledged tracking application. Here
we compare its performance to the mean-shift tracker [69]. For the video data we
used a standard object tracking PET video as the evaluation task [290]. We evaluated
three variants of our GADF based tracker. For all our variants the tracker begins
by learning a two-category foreground/background pixel classifier (an appearance
model) using the manually delineated first frame. Characteristics of the trackers we
compare are as follows:
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Fig. 19.8 GainMax trackers using gradient ascent information gain maximization can handle dis-
traction and occlusions well. For the mean-shift tracker (column 1), the red box is the tracking
result; for GainMax trackers 0–2 (columns 2–4), red indicates pixels correctly labeled in the ellip-
soid as target (true positive), blue indicate false positive pixels outside of the target ellipsoid

MeanShift The standard mean-shift tracker with histogram of size 9 by 9 by 9 bins
in RGB space.

GainMax0 The appearance model from the first frame is reused on all frames.
Gradient ascent is used to refine the tracking boundary in image space.

GainMax1 Training data are updated to use background pixels from the previous
frame and target pixels from the first frame. Then the two-category pixel classifier
is retrained and the tracking boundary is refined using gradient ascent for tracking
in both image and pixel feature space.

GainMax2 Training data are updated to use the previous frame’s target and back-
ground pixels. Then the two-category pixel classifier is retrained and the tracking
boundary is refined using gradient ascent for tracking in both image and pixel fea-
ture space.

For the three different variants of GainMax tracking, we fix the number of trees to
20, and the depth of the trees to be 10. We train the decision forest by randomly
sampling 80 % of the pixels as training data for each tree, and randomly choose
four features from [r, g, b,ΔXx,ΔXy,‖ΔX‖,∠ΔX] for the training of the binary
test functionals.

Some qualitative results are shown in Fig. 19.8, in which a woman turns her head
around in an office environment, and then a second person enters and occludes the
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Fig. 19.9 The average
tracking/ground truth box
overlap ratio for the lady
video

woman. Tracking is also challenging because the wall has nearly human skin color.
We observe that Meanshift and GainMax0 cannot handle the substantial variations
in target appearance as they do not do model updating. They are eventually dis-
tracted and fail to track. GainMax1 and GainMax2 both maintain correct tracking
of the lady even over the wall because their appearance models are updated on-line
in the pixel feature space and learn to distinguish the face color from wall color.
By comparison, GainMax2 works better when there is no occlusions. However, it
is easily distracted by the occlusion. However, GainMax1 can resist this distrac-
tion successfully because it does not update the target pixel data, and can maintain
tracking to the end of the video.

Given the ground truth target bounding box Bg and the tracking bounding box
Bt in a frame, we can evaluate the tracking performance by their average box over-
lapping ratio w.r.t. the boxes: R(Bg,Bt ) = (

Ω(Bg∩Bt )

Ω(Bg)
+ Ω(Bg∩Bt )

Ω(Bt )
)/2. In Fig. 19.9

we plot the average overlap ratio of the four trackers on the lady video.
We can further summarize the tracker’s accuracy by the percentage of frames in

which R(Bt ,Bg) > 0.5. Figure 19.10 summarizes the performance of the four eval-
uated trackers on three videos commonly used for evaluation in visual tracking. Due
to substantial appearance variations, occlusions and background distractions, Mean-
shift and GainMax0 get distracted easily as they do not perform model updating.
GainMax2 can achieve high tracking accuracy when there is gradual appearance
variations (as shown in Fig. 19.9), but fails to track when occlusions exist. Over all,

% (R > 0.5)
lady [135] view5 [291] mall [57]

Meanshift 0.66 0.46 0.55
GainMax0 0.43 0.47 0.42
GainMax1 0.85 0.92 1.00
GainMax2 0.82 0.47 1.00

Fig. 19.10 Robustness comparison of the visual trackers by the percentage of frames with
R(Bt ,Bg) > 0.5
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GainMax1 achieves the best robustness as it does model updating while avoiding
drifting.

19.4 Discussion and Conclusion

This chapter has presented three complementary improvements to the decision for-
est framework presented in this book.

Entanglement propagates knowledge from one part of the forest to another which
speeds learning, improves classifier generalization, and exploits long-range spatial
correlations in the input data.

Differentiable information gain maximization allows the optimal data partition-
ing functional to be found directly through gradient ascent rather than through an
exhaustive search over discrete functional parameter space.

Entanglement and differentiable information gain maximization enhance differ-
ent aspects of decision forests: the use of semantic contextual features and the node
optimization function, respectively; they are mutually compatible and may be com-
bined to further enhance the forest accuracy.

The learned proposal distributions (Sect. 19.2.2) and differentiable information
gain maximization both tackle the problem of node optimization in the presence of
a high dimensional feature space. The former increases the effectiveness of brute-
force feature search. The latter optimizes the information gain more directly. Since
differentiable information gain requires initialization, these two methods can be
combined effectively.

The fundamental enhancements presented here may be directly applied to im-
prove results in other applications that use classification forests, including multiple
sclerosis lesion segmentation [125], brain segmentation [411], myocardium delin-
eation [212], and more generic object class segmentation tasks [342]. Here we have
applied entanglement only to the task of anatomy segmentation, but it is a generic
concept and may be adapted to exploit other correlations (e.g. over time or space).
Likewise our differential information gain approach can form the basis for gradi-
ent ascent optimization with more complicated data partitioning functionals (e.g.
differentiable shape models) based on a-priori heuristics for specific applications.



Chapter 20
Decision Tree Fields: An Efficient
Non-parametric Random Field Model for Image
Labeling

S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and P. Kohli

This chapter introduces a new random field model for discrete image labeling tasks,
the Decision Tree Field (DTF), that combines and generalizes decision forests and
conditional random fields (CRF) which have been widely used in computer vision.

In a typical CRF model the unary potentials are derived from sophisticated forest
or boosting-based classifiers, however, the pairwise potentials are assumed to (1)
have a simple parametric form with a pre-specified and fixed dependence on the
image data, and (2) to be defined on the basis of a small and fixed neighborhood.
In contrast, in DTF, local interactions between multiple variables are determined by
means of decision trees evaluated on the image data, allowing the interactions to be
adapted to the image content.

This results in powerful graphical models which are able to represent complex
label structure.

Our key technical contribution is to show that the DTF model can be trained
efficiently and jointly using a convex approximate likelihood function, enabling us
to learn over a million free model parameters.

We show experimentally that for applications which have a rich and complex
label structure, our model achieves excellent results.

Parts of this chapter are reprinted, with permission, from [271], © 2011 IEEE.
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20.1 Introduction

In the last decade sophisticated random field models have been successfully applied
to a wide variety of computer vision problems [270]. In particular, random fields
have been used to model many problems including foreground-background (fg-bg)
segmentation [31, 38], semantic segmentation [157, 342], and a number of other
computer vision problems [363]. Many of these problems can be cast as an image
labeling problem, where we are given an image x and need to predict labels y. Ran-
dom fields provide a way of factorizing the joint distribution p(x,y) or the posterior
distribution p(y|x) into a product of local interactions.

In the classic Markov random field (MRF) we obtain the posterior distribution
p(y|x) by integrating a per-pixel likelihood functions with pairwise consistency po-
tentials ensuring a smooth solution [122, 217]. One major advance in the field was
to make these smoothness costs dependent on the local image structure [38], con-
ditioning parts of the model on the input data. In the last decade, these conditional
random field (CRF) models [157, 198, 361] have become popular for their improved
ability to capture the relationship between labels and the image.

A lot of research effort has been devoted to the development of efficient
algorithms for estimating the Maximum a Posteriori (MAP) solution of such
models [190, 363], and the same is true for algorithms for probabilistic infer-
ence [189, 393]. The problem of parameter estimation in these structured models
has likewise been addressed [361, 365, 391].

However, despite these rapid developments, (most) state-of-the-art random field
CRF models continue to suffer from the following limitations: (1) they are defined
on the basis of a fixed neighborhood structure (except the work of [191, 314]), and
(2) the potentials are assumed to have a simple parametric form with a pre-specified
and fixed dependence on the image data. While it is relatively easy to think of var-
ious ways to overcome these limitations, the key challenge is to find a model for
which efficient and high-quality training is still tractable.

This paper introduces a new graphical model, the Decision Tree Field (DTF),
which overcomes the above-mentioned limitations of existing models. We take a
simple yet radical view: every interaction in our model depends on the image, and
further, the dependence is non-parametric. It is easy to see that representing such a
model is challenging, since there are numerous ways of defining a mapping between
the image and the parameters of the interactions in the graphical model.

Our model uses decision trees to map the image content to interaction values. Ev-
ery node of every decision tree in our model is associated with a set of parameters,
which are used to define the potential functions in the graphical model. When mak-
ing predictions on a novel test instance, the leaf node of the decision tree determines
the effective weights.

There are a number of important reasons for the choice of decision trees to spec-
ify the dependence between potentials and image content. Firstly, decision trees are
non-parametric and can represent rich functional relationships if sufficient training
data are available. Secondly, the training of decision trees is scalable (see Chap. 21),
both in the training set size and in that the approach can be parallelized; recent
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advances even allow training on graphics processors [333]. For most computer vi-
sion applications where an explicit physical model is unavailable, the amount of
available or processable training data is the limiting factor for obtaining good pre-
dictive performance. Decision trees are scalable to large training sets, and many
recent works use decision trees and their variants in the large scale setting, such
as random forests [5, 44], extremely randomized trees [128], and semantic texton
forests [341]. In our context, decision trees give another big advantage: they allow
us to efficiently and jointly learn all parameters in the model. We achieve this by
using a log-concave pseudolikelihood objective function, which is known to work
well given enough training data because it is a consistent estimator and approaches
the exact maximum likelihood estimate asymptotically [189].

Our contributions can be summarized as follows. (1) To the best of our knowl-
edge, we propose the first graphical model for image labeling problems which al-
lows all potential functions to have an arbitrary dependence on the image data.
(2) We show how the dependence between potential functions and image data can
be expressed via decision trees. (3) We show how the training of the DTF model,
which involves learning of a large number of parameters, can be performed effi-
ciently. (4) We empirically demonstrate that DTFs are superior to existing models
such as random forest and common MRFs for applications with complex label in-
teractions and large neighborhood structures.

20.2 Related Work

There has been relatively little work on learning image-dependent potential func-
tions, i.e. the “conditional part” of a conditional random field. Most algorithms
for learning the parameters of a random field try to learn a class-to-class energy
table that does not depend on the image content [8, 19, 269, 365, 366]. How-
ever, there have been few attempts at learning the parameters of conditional poten-
tials [65, 138, 296]. Gould et al. [138] used a multiclass logistic regression classifier
on a set of manually selected features, such as the length and orientation of region
boundaries to obtain an image-dependent learned model for pairwise interactions.
Cho et al. [65] proposed a model for image restoration whose interactions were
dependent on the semantic meaning of the local image content as predicted by a
classifier. Unlike our work, all the above-mentioned models either target specific
tasks, or assume a particular form for the dependence of the potentials on the image
content. Neither of the above-mentioned approaches is able to learn a dependency
model with thousands or even millions of parameters which our model can achieve.

Decision trees are popularly used to model unary interactions, e.g. [343]; but with
two exceptions they have not been used for pairwise or higher-order interactions.
The first exception is the paper of Glesner and Koller [132], where decision trees
are used to model conditional probability tables over many discrete variables in
a Bayesian network. The difference is that in [132] the decisions in the tree are
evaluated on states of random variables, whereas in our work we evaluate the image
content and thus require no change to the inference procedure.
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The second exception is the “random forest random field” [287]. Despite the
similarity in name, the approach is fundamentally different from ours. Instead of
defining an explicit model as we do in (20.2), Payet and Todorovic [287] de-
fine the model distribution implicitly as the equilibrium distribution of a learned
Metropolis–Hastings Markov chain. The Metropolis–Hastings ratio is estimated by
classification trees. This is a clever idea but it has a number of limitations: (i) at
test-time there is no choice between different inference methods but one is bound to
using inefficient Markov Chain Monte Carlo (MCMC) (in [287] superpixel graphs
of few hundred regions are used and inference takes 30 seconds despite using ad-
vanced Swendsen–Wang cuts); and (ii) the model remains implicit, so that inspect-
ing the learned interactions is not possible.

In a broader view, our model has a richer representation of complex label struc-
ture. Deep architectures, such as [206] and latent variable CRFs, as in [323], have the
same goal, but use hidden variables representing the presence of larger entities such
as object parts. While these models are successful at representing structure, they
are generally difficult to train because their negative log-likelihood function is no
longer convex. In contrast, by learning powerful non-parametric conditional inter-
actions we achieve similar expressivity but retain convexity of the training problem.

20.3 Model

We now describe the details of our model. Note that in this chapter we describe a
very different model than those described in the rest of the book. This requires a
different notation, defined as follows. Throughout we will refer to x ∈ X as a given
observed image from the set of all possible images X . Our goal is to infer a discrete
labeling y ∈ Y , where the labeling is per-pixel, i.e. we have y = (yi)i∈V , yi ∈ L,
where V is the set of variable indices, and all variables have the same label set L.
We describe the relationship between x and y by means of an energy function E that
decomposes into a sum of energy functions EtF over factors F , where F is a subsets
of all variables. For example, for a pairwise factor we have |F | = 2. We have

E(y,x,w) =
∑

F∈F
EtF (yF , xF ,wtF ). (20.1)

By yF we denote the collection (yi)i∈F , and similarly we write xF to denote the
parts of x contained in F . While there may be many different subsets in F , we
assume they are of few distinct types and denote the type of the factor F by tF .
The function EtF is the same for all factors of that type, but the variables and image
content it acts upon differ. Furthermore, the function is parametrized by means of a
weight vector wtF to be discussed below.

A visualization of a small factor graph model is shown in Fig. 20.1. It has three
pairwise factor types (red, blue, and green) and two unary factor types (black and
turquoise). All factors depend on the image data x. Figure 20.2 shows the “unrolled”
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Fig. 20.1 Neighborhood
structure around each pixel
with five different factor types

Fig. 20.2 Unrolled factor
graph (image size 4-by-3
pixels), dependencies on x
and w are not shown

factor graph for an image of size 4-by-3 pixels, where the basic model structure
is repeated around each pixel i ∈ V , and pairwise factors which reach outside the
image range are omitted. In total we have |F | = 43 factors.

The energy (20.1) defines a conditional probability distribution p(y|x,w) as

p(y|x,w) = 1

Z(x,w)
exp

(−E(y,x,w)
)
, (20.2)

where Z(x,w) = ∑
y∈Y exp(−E(y,x,w)) is the normalizing constant. So far, our

model is in the general form of a conditional random field [198]. We now show how
to use decision trees for representing EtF in (20.1).

With each function Et we associate one decision tree. To evaluate
EtF (yF , xF ,wtF ), we start at the root of the tree, and perform a sequence of tests
s on the image content xF , traversing the tree to the left or right. This process is
illustrated in Fig. 20.3. When a leaf node has been reached, we collect the path
of traversed nodes from the root node to the leaf node. With each node q of the
tree we associate a table of energy values wtF (q, yF ). Depending on the number of
variables yF this energy function acts on, the table can be a vector (unary), a ma-
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Fig. 20.3 Summation of all
energy tables along the path
of visited decision nodes
(shaded blue)

trix (pairwise), or general k-dimensional array (higher order). We sum all the tables
along the path taken and compute the energy as

EtF (yF , xF ,wtF ) =
∑

q∈Path(xF )

wtF (q, yF ), (20.3)

where Path(xF ) denotes the set of nodes taken during tree evaluation. By using
weights at each node in the path we can regularize the nodes at the root of the tree
to exert a stronger influence, affecting a large number of leaves; at test-time we can
precompute the summation along each root-to-leaf path and store the result at each
leaf.

To compute the overall energy (20.1) we evaluate EtF for all factors F ∈ F .
Although the type tF might be the same, the function EtF depends on xF through
the evaluation of the decision tree. This allows image-dependent unary, pairwise,
and higher-order interactions. The set F is determined by repeating the same local
neighborhood structure for each pixel, as shown in Figs. 20.1 and 20.2.

In summary, our model consists of a set of factor types. Each factor type contains:
(i) the number k of variables it acts on and their relative offsets, (ii) a single decision
tree, and (iii) for each node in the decision tree, an energy table of size Lk . Given an
image x, for each labeling y we can evaluate E(y,x,w) using the above procedure.

20.3.1 Relation to Other Models

The proposed DTF generalizes a number of popular existing image labeling meth-
ods. If we ignore pairwise and higher-order interactions in (20.1), then the variables
are independent and making predictions for each pixel is the same as evaluating a
decision forests, as used in e.g. [341, 375]. Interestingly, as we will show in the ex-
periments, even in this setting we still slightly outperform standard decision forests
since we learn the weights in each split node instead of using empirical histograms;
this novel modification improves predictive performance without any test-time over-
head compared to conventional forests. For pairwise interactions we generalize sim-
ple CRFs with contrast-sensitive pairwise potentials such as in [31, 38], the GrabCut
system [315], and TextonBoost [342]. Finally, if for the pairwise interactions we use
decision trees of depth one, such that these interactions do not depend on the image
content, then our model becomes a classic Markov random field prior [217].
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20.4 Learning Decision Tree Fields

Learning the model involves selecting the neighborhood structure, the decision
trees, and the weights stored in the decision nodes. During learning we are given
an iid set {(xm,y∗

m)}m=1,...,M of images xm and ground truth labelings y∗
m. Our goal

is to estimate the parameters w of our model such as to predict y∗
m for a given xm.

For simplifying the derivation of the learning method, we can treat the given set of
images as if it would be one large collection of pixels as is done in [361].

20.4.1 Maximum Likelihood Learning

For learning the parameters of our model, we need to elaborate on how the parame-
ters w define the energy. One important observation is that for a fixed set of decision
trees the energy function (20.1) can be represented such that it is linear in the pa-
rameters w. To see this, consider a single EtF (yF , xF ,wtF ) function and define a
binary indicator function

BtF (q, z;yF , xF ) =
{

1 if q ∈ Path(xF ) and z = yF ,

0 otherwise.
(20.4)

Then, we can write the energy EtF (yF , xF ,wtF ) as a function linear in wtF ,
∑

q∈Tree(tF )

∑

z∈YF

wtF (q, z)BtF (q, z;yF , xF ). (20.5)

The use of decision trees allows us to represent non-linear functions on x. Although
non-linear in x, by the representation (20.5) we can parametrize this function lin-
early in wtF . Then, from (20.5) we see that the gradient has a simple form,

∇wtF
(q,z)EtF (yF , xF ,wtF ) = BtF (q, z;yF , xF ). (20.6)

Because (20.1) is linear in w, the log-likelihood of (20.2) is a concave and differ-
entiable function in w [189, Corollary 20.2]. This means that if computing Z(x,w)

and the marginal distributions p(yF |x,w) for all F ∈ F would be tractable, then
learning the parameters by maximum likelihood becomes a convex optimization
problem.

We now show how to use efficient approximate likelihood methods to learn all
parameters associated with the decision trees from training data. For now we assume
we are given a fixed set of factor types, including decision trees, but have to learn
the weights/energies associated with the nodes of the trees. We will discuss how to
learn trees later.

20.4.2 Pseudolikelihood

The pseudolikelihood [26] defines a surrogate likelihood function that is maxi-
mized. In contrast to the true likelihood function computing the pseudolikelihood
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is tractable and very efficient. The pseudolikelihood is derived from the per-variable
conditional distributions p(yi |y∗

V\{i},x,w). By defining

�i(w) = − logp
(
yi |y∗

V\{i},x,w
)

(20.7)

we can write the regularized negative log-pseudolikelihood �npl(w) as the average
�i over all pixels,

�npl(w) = 1

|V|
∑

i∈V
�i(w) − 1

|V|
∑

t

logpt (wt ), (20.8)

where pt(wt ) is a prior distribution over wt used to regularize the weights. We
will use multivariate Normal distributions N (0, σt I ), so that − logpt (wt ) is of the
form 1

2σ 2
t

‖wt‖2 + Ct(σt ) and the constant Ct(σt ) can be omitted during optimiza-

tion because it does not depend on w. For each factor type t the prior hyperpa-
rameter σt > 0 controls the overall influence of the factor and we need to select
a suitable value by means of a model selection procedure such as cross valida-
tion.

Function (20.8) is convex, differentiable, and tractably computable. For optimiz-
ing (20.8) we use the L-BFGS numerical optimization method [426]. To use L-
BFGS we need to iteratively compute �i(w) and the gradient ∇wt �i(w). The com-
putation of �i(w) and ∇wt �i(w) is straightforward and yields the expressions,

�i(w) =
∑

F∈M(i)

EF

(
y∗
F ,x,wtF

)

+ log
∑

yi∈Yi

exp

(
−

∑

F∈M(i)

EF

(
yi, y

∗
V\{i},x,wtF

))
, (20.9)

∇wt �i(w) =
∑

F∈Mt(i)

∇wt EF

(
y∗,x,wt

)

− Eyi∼p̃i

[ ∑

F∈Mt(i)

∇wt EF

(
yi, y

∗
V\{i},x,wt

)]
, (20.10)

where we use M(i) to denote the subset of F that involves variable yi , and Mt(i)

likewise but restricted to factors of matching type, i.e. Mt(i) = {F ∈ M(i) : tF = t}.
The operator Ey∼p[·] takes the expectation of its argument over the specified dis-
tribution, and we have used the shorthand p̃i = p(yi |y∗

V\{i},x,w). By taking the
uniform average of (20.9) and (20.10) over all pixels in all images, we obtain the
expressions of the overall learning objective and its gradient in the parameters, re-
spectively.

When initializing the weights to zero we have approximately ‖∇w�npl(w)‖ ≈ 1.
During optimization we stop when ‖∇w�npl(w)‖ ≤ 10−4, which is the case after
around 100–250 L-BFGS iterations, even for models with over a million parameters.
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20.4.3 Learning the Tree Structure

Ideally, we would like to learn the neighborhood structure and decision trees jointly
with their weights using a single objective function. However, whereas the weights
are continuous, the set of decision trees is a large combinatorial set. We therefore
propose to use a simple two-step heuristic to determine the decision tree structure:
we learn the classification tree using the training samples and the information gain
splitting criterion. This greedy tree construction is popular and known to work well
on image labeling problems [341].

The key parameters are the maximum depth of the tree, the minimum number of
samples required to keep growing the tree, and the type and number of split features
used. As these settings differ from application to application, we describe them in
the experimental section. Unlike in a normal classification tree, we store weights at
every decision node and initialize them to zero, instead of storing histograms over
classes at the leaf nodes only.

The above procedure is easily understood for unary interactions. We now show
that it can be extended in a straightforward manner to learn decision trees for pair-
wise factors as well. To this end, if we have a pairwise factor we consider the product
set L×L of labels and treat each label pair (l1, l2) ∈ L×L as a single class. Each
training pair of labels becomes a single class in the product set. Given a set of such
training instances we learn a classification tree over |L|2 classes using the informa-
tion gain criterion. Instead of storing class histograms we now store weight tables
with one entry per element in L×L. The procedure extends to higher-order factors
in a straightforward way.

Once the trees are obtained, we set all their weights to zero and optimize (20.8).
During optimization the interaction between different decision trees is taken into
account. This is important because the tree structures are determined independently
and if we were to optimize their weight independently as well, then we would suffer
from overcounting labels during training. The same overcounting problem would
occur if we would want to use the class histograms at the leaf nodes directly, for
example by taking the negative log-probability as an energy.

20.4.4 Complexity of Training

The complexity to compute the overall objective (20.8) and its gradient is O(|V| ·
|L| · N), where V is the set of pixels in the training set, L is the label set, and N is
the number of factors in the neighborhood structure. This complexity is the same for
pairwise terms, despite pairwise terms needing |L|2 classes. Note that this is linear
in all quantities, and independent of the order of the factors. This is possible only
because of the pseudolikelihood approximation. Moreover, it is even more efficient
than performing a single sweep of message passing in loopy belief propagation,
which has complexity O(|V| · |L|k · N) for factors of order k ≥ 2.
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20.4.5 Making Training Efficient

Training a graphical model on millions of pixels is computationally challenging. We
have two principled methods to make training efficient.

First, observe that our training procedure parallelizes in every step: we train the
classification trees in parallel [333]. Likewise, evaluating (20.8) and its gradient is a
large summation of independent terms, which we again compute in parallel with no
communication overhead.

The second observation is that every step in our training procedure can be carried
out on a subsampled training set. For classification trees we can process a subset of
pixels, as in [341]. Less obvious, we can do the same thing when optimizing our
objective (20.8). The first term in Eq. (20.8) takes the form of an empirical expecta-
tion Ei∼U(V)[�i(w)] that can be approximated both deterministically or by means of
stochastic approximation. We use a deterministic approximation by selecting a fixed
subset V ′ ⊂ V and evaluating �′

npl(w) = 1
|V ′|

∑
i∈V ′ �i(w) − 1

|V ′|
∑

t logpt(wt ). We
select V ′ to be large enough so this computation remains efficient; typically V ′ has
a few million elements. Note that when sampling V ′ uniformly at random with re-
placement from V , the law of large numbers guarantees the asymptotic correctness
of this approximation.

20.4.6 Inference

We use different inference methods during test-time. For making maximum poste-
rior marginal predictions (MPM) we use an efficient Gibbs sampler. Because the
Gibbs sampling updates use the same quantities as used for computing (20.9) we
do not have to unroll the graph. For obtaining approximate MAP predictions, we
use the Gibbs sampler with simulated annealing (SA), again exploiting the model
structure [270]. To have a baseline comparison, we also minimize (20.1) using tree-
reweighted message passing (TRW) by unrolling the factor graph and using the
implementation of [190].

20.5 Experiments

We considered a broad range of applications and report experiments for multiple
datasets. The aim is to show that the DTF enables improved performance in chal-
lenging tasks, where a large number of interactions and parameters need to be con-
sidered and these cannot be manually tuned. Moreover, we show that conditional
pairwise interactions better represent the data and lead to improved performance.
As the datasets are diverse, they also show the broad applicability of our system.
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Fig. 20.4 Input (left),
labeling (right)

20.5.1 Conditional Interactions: Toy Snake Dataset

In this experiment we construct a task that has only very weak local evidence for
any particular label and structural information needs to be propagated at test-time in
order to make correct predictions. Moreover, this structure is not given but needs to
be learned from training data.

Consider Fig. 20.4, illustrating the task. A “snake” shown on the input image is a
sequence of adjacent pixels, and the color in the input image encodes the direction
of the next pixel: red means “go north”, yellow means “go east”, blue means “go
west”, and green means “go south”. Once a background pixel is reached, the snake
ends. Each snake is ten pixels long, and each pixel is assigned its own label, starting
from the head (black) to the tail (white), with the background taking its own label
(green). Knowing about these rules, the labeling (Fig. 20.4, right) can be perfectly
reconstructed. Here, however, these rules need to be learned from training instances.

Of course, in a real system the unary interactions typically provide strong
cues [19, 342], but we believe that the task distills the limitations of noisy unary
interactions: in this task, for making perfect predictions, the unary would need to
learn about all possible snakes of length ten, of which there are very many.

We use a standard 4-neighborhood for both the MRF and the DTF models. The
unary decision trees are allowed to look at every pixel in the input image, and there-
fore could remember the entire training image. We use a training set of 200 images,
and a test set of 100 images.

The results obtained are shown in Table 20.1 and Fig. 20.5. Here random forests
(RF), trained unary potentials (Unary), and the learned Markov random field (MRF)
perform equally well, at around 91 %. Upon examining this performance further, we
discovered that while the head and tail labels are labeled with perfect accuracy, to-
wards the middle segments of the snakes the labeling error is highest, see Table 20.1.
This is plausible, as for these labels the local evidence is weakest. When using con-
ditional pairwise interactions the performance improves to an almost perfect 99.4 %.
This again makes sense because the pairwise conditional interactions are allowed to

Table 20.1 Test set
accuracies for the snake
dataset

RF Unary MRF DTF

Accuracy 90.3 90.9 91.9 99.4

Accuracy (tail) 100 100 100 100

Accuracy (mid) 28 28 38 95
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Fig. 20.5 Predictions on a novel test instance

peek at the color-codes at their neighbors for determining the directionality of the
snake.

The predictions are illustrated for a single test instance in Fig. 20.5. We see that
only the DTF makes a perfect prediction. To show the uncertainty of the unary
model, we visualize two samples from the model.

20.5.2 Learning Calligraphy: Chinese Characters

In the previous experiment we used a standard 4-connected neighborhood struc-
ture. In this experiment we show that by using larger conditional neighborhoods
we are able to represent shape. We use the KAIST Hanja2 database of hand-
written Chinese characters. We occlude each character by a gray box centered
on the image, but with random width and height. This is shown in the leftmost
column of Fig. 20.6. We consider two datasets, one where we have a “small
occlusion” and one with a “large occlusion” box. Note that most characters in
the test set have never been observed in the training set, but a model that has
learned about shape structure of Chinese characters can still find plausible com-
pletions of the input image. To this end we use one unary factor with a deci-
sion tree of depth 15. Additionally, we use a dense pairwise neighborhood struc-
ture of 8-connected neighbors at one and two pixels distance, plus a sparse set of
27 neighbors at {(−9,0), (−9,3), (−9,6), (−9,9), (−6,0), . . . , (9,9)}. Therefore,
each variable has 2 · (24 + 4 + 4) = 64 neighboring variables in the model. For the
pairwise decision trees we use trees of depth one (MRF), or six (DTF).

The results for the large occlusion task are shown in Fig. 20.6. Qualitatively, they
show the difference between a rich connectivity structure and conditional interac-
tions. Observe, for example, that the MRF essentially performs only a smoothing
of the results while respecting local stroke-width constraints, as apparent from the
MRF MAP prediction in the first row of Fig. 20.6. In contrast, the DTF predic-
tions hallucinate meaningful structure that may be quite different from the ground
truth but bears similarity to Chinese characters. Note that we achieve this rich struc-
ture without the use of any latent variables. Because this task is an inpainting task,
the quantitative assessment is more difficult since the task is truly ambiguous. We
therefore report accuracies only for the small-occlusion case, where a reasonable
reconstruction of the ground truth seems more feasible. We measure the per-pixel
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Fig. 20.6 Test set predictions for the large occlusion case

accuracy in the occluded area on the test set. For the random forest baseline we ob-
tain 67.74 %. The MRF with dense neighborhood improves this to 75.18 % and the
DTF obtains 76.01 %.

20.5.3 Body-Part Detection

We consider the task of body-part classification from depth images, as recently pro-
posed in [343]. Given a 2D depth image, and a foreground mask, the task is to label
each pixel as belonging to one of 31 different body parts, as shown in Fig. 20.7.
Despite the variations in pose and body sizes [343] obtains high-quality recognition
results by evaluating a classification forest for each pixel, testing local and global
depth disparities. See Chap. 13 for more details. In this task, the label set has a
large amount of structure, but it is not clear that a sufficiently complex unary clas-
sifier, when given the image, cannot implicitly represent this structure reasonably
well. Here we show that by adding pairwise interactions we in fact improve the
recognition accuracy. Moreover, once we make the interactions conditional, accu-
racy further improves.

The experimental setup is as follows. We use two subsets of the annotated data
of [343] for training: 30 depth images, and 1500 depth images. In both cases we
use a fixed separate set of 150 depth images for testing. We train four unary deci-
sion trees for all models. For the pairwise models, we use the following neighbor-
hood sizes: (i) “+1” for adding a 4-neighborhood one pixel away, (ii) “+5” for an
8-neighborhood five pixels away, and (iii) “+20” when adding an 8-neighborhood
20 pixels away. In the “+1,5,20” configuration, each variable has 4 + 8 + 8 = 20
neighbors. For each of the pairwise interactions we train two trees of depth six. We
measure the results using the same mean per-class accuracy score as used in [343].



308 S. Nowozin et al.

Fig. 20.7 Test set recognition results on the training set of 30 images. We show MRF (top) and
DTF (bottom) results

Table 20.2 Body-part recognition results: mean per-class accuracy, training time (4 cores, 8
threads), and number of parameters. (∗) We did not obtain reliable run times for the 1500 image
runs, as multiple jobs have been running in parallel on the machines used

Training set Measure [343] unary MRF DTF

+1 +1,20 +1,5,20 +1 +1,20 +1,5,20

30 images Average
accuracy

14.8 21.36 21.96 23.64 24.05 23.71 25.72 27.35

Run time 1m 3m18 3m38 10m 10m 5m16 17m 22m

Model
parameters

– 176k 178k 183k 187k 438k 951k 1.47M

1500 images Average
accuracy

34.4 36.15 37.82 38.00 39.30 39.59 40.26 41.42

Run time 6h34 ∗ ∗ ∗ (30h)∗ ∗ ∗ (40h)∗

Model
parameters

– 6.3M 6.2M 6.2M 6.3M 6.8M 7.8M 8.8M

The results for 30 and 1500 training images are shown in Table 20.2 and one in-
stance is shown in Fig. 20.7. Even without adding pairwise interactions, our learned
unary weights already outperform the classification forest [343]. When adding more
interactions (+1, +1,20, +1,5,20), the performance increases because dense pair-
wise interactions can represent implicit size preferences for the body parts. Like-
wise, when adding conditionality (MRF to DTF), the performance improves. The
best performing model is our DTF with large structure (+1,5,20) and almost 1.5
million free parameters. It is trained in only 22 minutes and achieves 27.35 % mean
per-class accuracy. For the same setup of 30 and 1500 training images, the original
work [343] reports mean per-class accuracies of 14.8 % (30 train) and 34.4 % (1500
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Fig. 20.8 Illustrating one learned horizontal interaction (20 pixels apart): The left figure shows
the average depth-normalized silhouette reaching each of the 32 leaf nodes in the learned decision
tree. We select one leaf (marked red box, enlarged) and show the corresponding effective 32 × 32
weight matrix obtained by summing the learned weights along the path from the root-to-leaf node.
The conditional interaction can be understood by visualizing the most attractive (in blue) and most
repulsive (in red) elements in the matrix. We superimpose arrows for the two most attractive and
repulsive interactions on test images (right). The first and second pose exemplify how left and right
upper parts of the legs can appear 20 pix to the right of each other in a way that matches the pattern
of the leaf. While the configuration shown in the third and fourth pose is plausible, it does not fit
the leaf pattern and thus the interaction is not active

train), but reports an impressive 56.6 % with 900k training images, trained for a day
on a 1000 core cluster.

An example of a learned pairwise interaction is shown in Fig. 20.8, demonstrat-
ing that the improved performance of the DTF can be attributed to the more powerful
interactions that are allowed to take the image into account.

20.6 Conclusion

We have introduced Decision Tree Fields as flexible and accurate models for im-
age labeling tasks. This accuracy is achieved by being able to represent complex
image-dependent structure between labels. Most importantly, this expressiveness is
achieved without the use of latent variables and therefore we can learn the parame-
ters of our model efficiently by minimizing a convex function.

The source code for the decision tree field implementation will be made available
at the authors’ homepages.



Chapter 21
Efficient Implementation of Decision Forests

J. Shotton, D. Robertson, and T. Sharp

This chapter describes a variety of techniques for writing efficient, scalable, and
general-purpose decision forest software. It will cover:

• algorithmic considerations, such as how to train in depth first or breadth first
order;

• optimizations, such as cheaply evaluating multiple thresholds for a given feature;
• designing for multi-core, GPU, and distributed computing environments; and
• various ‘tricks of the trade’, including tuning parameters and dealing with unbal-

anced training sets.

21.1 Introduction

A useful property of decision forests is their simplicity: basic forest training and test
algorithms can be implemented using fewer than 50 lines of code. However, straight-
forward implementations may run too slowly in some applications, e.g. where a
large quantity of training data is required or where many trees or tree levels are used.
Fortunately, decision forest training and test times can be significantly reduced by
high- and low-level code optimization and parallelization. Furthermore, this benefit
can, with care, be achieved without sacrificing code readability or flexibility. This
chapter describes several practical techniques for implementing fast, efficient, scal-
able, and reusable software for decision forest training and inference. The insights
presented here are gleaned from years of practical experience using forests, and we
hope they will save considerable time and effort on the part of future practitioners.
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One of the most crucial lessons we have learned about efficient decision for-
est implementation is that everything depends on the data. For example, the most
effective strategy for parallelizing decision forest training across multiple proces-
sors or processor cores will typically depend on the quantity of training data (e.g.
whether or not it will all fit in available RAM) and whether the best test accu-
racy will necessitate many shallow trees or few deep trees. As you read this chap-
ter, keep in mind the properties of your data and the problem you are address-
ing.

The chapter is structured as follows. The next section explains the difference
between depth first and breadth first tree training, and explains advantages and lim-
itations of these two approaches. It goes on to describe some techniques for making
training more efficient, including how multiple candidate thresholds can be eval-
uated cheaply for a given feature response function, and gives some advice on
designing data structures for cache utilization efficiency. It then describes various
techniques for parallelizing decision forest training and test for multi-core, GPU,
and distributed computing environments. Finally, we discuss parameter tuning and
present a few miscellaneous ‘tricks of the trade’. Most of the following discussion
will focus on the implementation of single decision trees, as the extension to forests
is usually trivial.

The next chapter, Chap. 22, describes the software library that accompanies this
book (‘Sherwood’). This library includes a reusable and easy-to-understand imple-
mentation of a basic decision forest training algorithm. It does not employ all the
techniques described in this chapter, but it may provide a useful basis for imple-
menting your own decision forest software.

21.1.1 Notation

This chapter’s emphasis on implementation details means that we will need to use
a slightly expanded form of the notation introduced in Part I. Specifically, we will
expand the definition of a weak learner as follows (cf. Eqs. (3.5) and (3.6)):

h(v, θ)︸ ︷︷ ︸
weak learner response

= [
f (v,φ)
︸ ︷︷ ︸

feature response

≥ (τ )︸︷︷︸
threshold

]
, (21.1)

where [·] is the 0–1 indicator function, v represents a data point, and θ = (φ, τ )

comprises the weak learner parameters φ (the feature parameters) and τ (the feature
response threshold). As usual, the weak learner partitions the training data points
into left and right subsets, SL and SR. A function I (S,SL,SR) will then compute
statistics over the labels of these subsets in order to compute the information gain.
For example, in a classification forest, the statistics are a histogram over the class
labels, and the information gain uses the entropy of the left and right histograms.
For the purposes of this chapter, we will treat v as an indirect representation of the
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Fig. 21.1 Depth first vs. breadth first training. In depth first training a single node is trained at a
time. This is typically implemented using a recursive function. In breadth first training, a ‘frontier’
set of leaf nodes is trained together as a single iteration. The frontier is typically the set of all leaf
nodes at a particular depth in the tree. This means that the total number of tree nodes can potentially
double at each iteration. The text discusses various trade-offs between these two training schedules

training point, e.g. the index of a pixel in a particular image, or a point in time for a
temporal sequence.

21.2 Depth First and Breadth First Training

One of the most important decisions to make about implementing decision tree train-
ing is whether to use depth first or breadth first training. The two approaches are il-
lustrated in Fig. 21.1, and pseudocode implementations are given in Algorithms 21.1
and 21.2. Please note that, for clarity of exposition, the pseudocode implementa-
tions do not include training termination criteria other than fixing a maximum tree
depth D.

21.2.1 Depth First Training

In depth first training, tree nodes are trained one at a time, starting at the root node.
For each node, the goal is to select the weak learner that will be used to assign in-
coming data points to the left or right child. Many candidate weak learners are tested
and the one associated with the largest information gain over candidate partitions of
the training data points is selected. Then this weak learner is used to partition the
set of training points S into left and right subsets, and the algorithm recurses for the
left and right child nodes. This recursive program structure results in a depth first
tree traversal ordering. A pseudocode implementation of this algorithm is given in
Algorithm 21.1. Depth first training is used within Sherwood, the code library that
accompanies this book (see Chap. 22).
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Algorithm 21.1 Depth first training algorithm
// S: set of training points
// d: depth of current node in tree
Require: TrainDepthFirst(S, d)

1: // Check for termination. D is max tree depth.
2: if d > D then
3: return LeafNode(TrainPredictor(S))

4: // Search over weak learners for best information gain
5: I � ← −∞, θ� ← ∅
6: for i = 1 → |T | do
7: θ ← SampleWeakLearner()

8: (SL,SR) ← PartitionData(S, θ)

9: I ← I (S,SL,SR) // Compute information gain
10: if I > I� then I � ← I, θ� ← θ

11: // Recurse on left and right subsets
12: (SL,SR) ← PartitionData(S, θ�)

13: LeftChild ← TrainDepthFirst(SL, d + 1)

14: RightChild ← TrainDepthFirst(SR, d + 1)

15: return SplitNode(θ�,LeftChild,RightChild)

21.2.2 Breadth First Training

Breadth first training differs from depth first training in that a whole ‘frontier’ of
leaf nodes are split at each iteration. The frontier may be any subset of all the leaf
nodes in the tree.1 The tree can therefore potentially double in size at each iteration.

At each iteration, a set of statistics are initialized for each frontier node and for
each candidate setting of the weak learner parameters θ . The set of all training
points is then iterated over. For each training point, the leaf node on the frontier that
it reaches is found. This can be computed on demand by traversing the existing tree
from the root to a leaf node (or cached from a previous iteration). An inner loop
over the candidate weak learners is then performed, and according to the binary
left/right decision made for each training point, the relevant frontier node’s statistics
are incremented. After all training points have been seen, the choice of weak learner
parameters that gave the best information gain can be computed for each frontier
node based on the aggregated sets of statistics. Pseudocode for breadth first training
is given in Algorithm 21.2.

1The frontier can comprise all the leaf nodes or only a subset. It might contain leaf nodes from
different levels in the tree. Some leaf nodes might not be on the frontier; for example, those nodes
for which no candidate weak learner could improve the information gain at a previous iteration of
breadth first training.
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Algorithm 21.2 Breadth first training algorithm
// S: set of training points
// RootNode: root node of tree
// F : set of frontier leaf nodes
Require: TrainBreadthFirstLevel(S,RootNode,F)

1: // Initialize
2: call Iij = InitializeStatistics() for all i ∈ {1, . . . , |T |} and j ∈F
3: call θ i = SampleWeakLearner() for all i ∈ {1, . . . , |T |}
4: // Aggregate statistics across all training points
5: for (v,y) ∈ S do
6: j ← TraverseTreeToLeaf(RootNode,v) // j ∈F
7: for i = 1 → |T | do
8: h ← h(v, θ i ) // Did v go left or right?
9: UpdateStatistics(Iij , h,y)

10: // Choose best weak learner at each frontier node
11: for j ∈F do
12: compute θ� ← arg maxi ComputeInformationGain(Iij )

13: ConvertToSplitNode(j, θ�,Iij ) // This also trains predictors at new
child leaf nodes

// S: set of training points
Require: TrainBreadthFirst(S)

1: RootNode = LeafNode()
2: for d = 0 → D do
3: F ← GetAllLeaves(RootNode)
4: TrainBreadthFirstLevel(S,RootNode,F)

5: return RootNode

21.2.3 Properties

Depth first and breadth first training have very different properties:

• In depth first training, the outer loop is over candidate weak learners and the inner
loop is over training points. In breadth first training, this order is reversed.

• Depth first training requires the training points to be recursively partitioned many
times over. Breadth first training requires at most D (maximum tree depth) linear
sweeps through the training points.

• Depth first training can be implemented to use a constant amount of memory for
candidate weak learner statistics. A straightforward implementation of breadth
first training requires O(2D) memory for the weak learner statistics.

• Depth first is easier to implement.
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These properties mean that implementations of the two algorithms will have very
different computational characteristics and use cases. Breadth first is the natural
choice when it is expensive to randomly access the data. This might happen, for
example, when the training data are too big to fit in memory and must be streamed
from disk, or when it is more efficient to compute feature responses sequentially for
the pixels of an image due to cache coherency. It is also easier to parallelize and dis-
tribute the breadth first training over multiple CPU or GPU cores (see Sects. 21.5.1,
21.5.2, and 21.5.3 below).

However, breadth first uses a very large amount of memory when the tree gets
deep. To avoid this, a sensible ‘hybrid’ strategy might be to train the first few levels
with breadth first and then switch to depth first for the lower levels. Alternatively,
one can ‘batch up’ either the frontier nodes or the candidate weak learners to main-
tain a constant memory usage with breadth first training.

Of course, as we have mentioned before, the efficiency of any implementation
depends heavily on your particular data and application.

21.3 Weak Learner Implementation

In this section, we discuss two implementation issues relating to computing the
weak learner response (21.1): when to compute the feature responses f (v,φ), and
how we can evaluate multiple candidate feature response thresholds τ per candidate
feature parameters φ.

21.3.1 Computing Responses on the Fly

Many traditional machine learning algorithms treat the feature responses f (v,φ)

as a pre-computed matrix F = fij = f (vi ,φj ) for all possible settings of the weak
learner parameters φi and for all training points vi . By pre-computing matrix F , the
learning algorithm can simply look up feature response values as needed. However,
storing the full matrix of feature responses may be needlessly memory inefficient.
This is especially true when there is a very large search space of parameters φ,
e.g. in the case of the depth difference features used in Chap. 13. Even if sufficient
memory is available, it is possible that poor cache utilization will result in inefficient
training.

One of the attractions of randomized decision forests is that they positively en-
courage a simple alternative: computing the feature responses f (v,φ) on the fly.
The random choice of feature parameters φ at each node allows the learning to ex-
plore a huge number of features. The feature function f is allowed to compute any
function of the original data. For example, if the training point v is used to index a
pixel in a particular image, then f (v,φ) could compute any function of the image at,
or in the surrounding neighborhood of, the pixel. Sometimes pre-processing (such



21 Efficient Implementation of Decision Forests 319

Fig. 21.2 Efficient evaluation of multiple candidate thresholds τ per feature parameters φ. In
step (1), statistics are aggregated across a set of training points. These statistics are binned by the
candidate thresholds τk . In step (2), a linear sweep is sufficient to compute the cumulative left and
right statistics, and thereby the information gain, for all candidate thresholds. While this illustration
deals with classification forests where the statistics are unnormalized class count histograms, the
approach generalizes to any additive statistics, e.g. sum and sum of squares for a Gaussian

as edge-detection or integral imaging) might be used; then f (v,φ) could compute
any function of that pre-processed data too. It is particularly appropriate to com-
pute responses on the fly when the response is a trivial function of existing data,
for example the difference of image pixel intensities, or temporal differences in a
sequence.

21.3.2 Multiple Candidate Thresholds per Feature

A related implementation question is how to convert from the real-valued scalar
feature response f into the binary weak learner response h representing the ‘branch
left or right’ decision (see (21.1)). In other words, how can we choose a sensible
threshold value τ? The simplest solution is to sample the weak learner parameter
vector θ = (φ, τ ) from some sensible distribution. However, a cheaper alternative
may be to evaluate several candidate thresholds τ for each setting of φ. In this case,
one need only compute f once (a relatively costly operation) to obtain multiple
possible values of h. This strategy therefore works well when computing feature
responses on the fly, as discussed in the previous section. If you have sufficient
training data to avoid overfitting, this strategy may result in a more accurate decision
forest for less training computation.

Figure 21.2 illustrates the algorithm, which has two steps. The first step aggre-
gates binned statistics across a set of training points as follows. Given the sampled
feature parameters φ, an ordered set of candidate thresholds {τk}K−1

k=0 is sampled.
After the feature response f (v,φ) is computed for a particular data point v, the
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relevant bin k ∈ {0, . . . ,K} is found as

k =

⎧
⎪⎪⎨

⎪⎪⎩

0 if f < τ0,

1 if τ0 ≤ f < τ1,

. . .

K if τK−1 ≤ f.

(21.2)

Note that there are thus K + 1 bins for K thresholds. If the thresholds are uniformly
spaced, then bin number k can be computed trivially. Alternatively, binary or linear
search may be used to find k reasonably efficiently. The statistics for bin k are then
updated for the data point v. This is done for all data points, giving statistics ξk (e.g.
unnormalized class count histograms) for k = 0, . . . ,K .

The second step performs a linear sweep through the candidate thresholds to
compute the associated information gains in O(K) time, as follows. First, the statis-
tics are accumulated for all training points by aggregating all binned statistics; let us
call this ξR ← ⋃

k ξk . Let also ξL ← ∅ initially. Then a linear sweep is performed
through the candidate thresholds τk from k = 0, . . . ,K − 1. At each bin k the statis-
tics are updated as

ξL ← ξL ∪ ξk, (21.3)

ξR ← ξR \ ξk. (21.4)

After each such update, the statistics ξL and ξR contain exactly the left and right
statistics needed to compute the information gain I given weak learner parameters
θ = (φ, τk).

With care, this approach can be used with both depth first and breadth first tree
training. It can also be generalized efficiently to evaluate weak learners of the form
h(v, θ) = [τ1 ≥ f (v,φ) ≥ τ2] with two thresholds τ1 and τ2.

21.3.3 Efficient Threshold Selection

The previous section explains how multiple feature response thresholds τ can be
efficiently evaluated for a single candidate feature response function f (v,φ). How-
ever, a remaining question is how to choose candidate thresholds τ that are likely
to give good information gain. One method is simply to fix these in advance, based
on some expected range of sensible thresholds. Another method (see Chap. 19) is
to train a forest once, compute the distribution over the chosen thresholds, and then
re-train the forest by drawing random threshold values from that distribution. How-
ever, the main limitation of both of these methods is that it is impossible to know
in advance whether the response values associated with training data reaching a
particular node will conform to the fixed range or the observed distribution.

An interesting alternative is to perform two passes over the feature responses
for each node: first to determine a set of sensible threshold values by inspecting
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the distribution of feature response values, and second to accumulate the statistics
given that range. Sensible thresholds values might be chosen e.g. by dividing the
range of response values into equal parts, or by using percentiles using the cumu-
lative distribution (the latter approach is taken by the Sherwood software library
described in the next chapter). While this does require two passes through the data,
(i) it may be sufficient to use only a subset of feature response values to approximate
the range or distribution, and (ii) the feature responses can be cached when using
the depth first training schedule. Further, even with breadth first, it is possible that
the increased relevance of the thresholds tested will result in a forest that is more
accurate, even when fewer thresholds are evaluated. This technique will likely in-
crease the strength of the weak learners, and so, as usual, care is needed to avoid
overfitting.

21.4 Data Structures

In general, the use of compact data structures and a contiguous memory layout helps
to ensure efficient cache utilization. How data structures such as trees are repre-
sented in computer memory can have an important impact on the performance of
decision forest training and test algorithms.

21.4.1 Tree Memory Organization

Traditionally, trees are stored in computer memory by referencing a root node. Each
node in turn contains a pointer or reference to its child nodes, and optionally to its
sibling and parent nodes. New nodes can be appended simply by allocating addi-
tional memory and fixing up the pointers accordingly. However, while this kind of
structure may be convenient for growing trees during training, this is not necessary
during test. Since tree nodes will be accessed successively and repeatedly, we would
prefer them to be stored in nearby memory locations to improve cache performance.
Therefore we recommend using a contiguous array structure, at least at test time.

One possibility is to store all the nodes of the tree in a contiguous array structure
(see Fig. 21.3a and b), where each element of the array represents one tree node,
with the first element corresponding to the root node. Because the trees used here are
binary, the indices of a node’s two (left and right) children can always be determined
simply as follows:

leftChildIndex = 2 × parentNodeIndex + 1, (21.5)

rightChildIndex = 2 × parentNodeIndex + 2. (21.6)

These relationships allow tree nodes to be represented compactly, since no mem-
ory is used to encode the relationship between parent and child nodes. Provided
that trees are approximately balanced (all leaf nodes at the same depth), this per-
mits both memory-efficient tree representation and time-efficient random access to
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Fig. 21.3 Options for memory organization. (a) A toy decision tree. (b) The data associated with
the nodes may be stored in a linear array, organized so that the indices of a node’s child or parent
nodes an be simply computed from the node’s index. (c) If the tree is unbalanced, it may be more
efficient to store the index of the first child for each parent node (or NULL for leaf nodes). (d) Since
split and leaf nodes have different data storage requirements, it may be more efficient to store them
in separate arrays. An extra boolean variable (prefix S or L) is needed to distinguish split and leaf
nodes

nodes. However, where the tree is unbalanced (e.g. Fig. 21.3a), the node array will
contain empty elements. It is memory inefficient to store very unbalanced trees in
this way.

An alternative is to store at each array element the index (or offset) of the left and
right children (Fig. 21.3c). We can adopt the convention that left and right siblings
are always contiguous and we therefore require only one offset to be stored with
each element. Since we will only be traversing the tree in top-down order, it is not
necessary to store references to parent or sibling elements. Storing indices (or off-
sets) rather than explicit pointers has the benefit of being invariant to serialization
and deserialization.

21.4.2 Split and Leaf Node Representation

Another consideration is how to represent split (interior) nodes and leaf nodes. At
split nodes we must store the parameters of the weak learner, and be able to navigate
to child nodes. Conversely, leaf nodes do not have associated weak learners nor child
nodes; instead we must be able to retrieve statistics that are associated with the leaf
during training. The different data requirements for split and leaf nodes suggest that
they be treated differently. This is particularly true when the amount of memory
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used by the forest is an issue: unnecessarily storing feature parameters for all leaf
nodes is likely to double the amount of memory used.

A simple way to implement this is to store split nodes and leaf nodes separately,
each in their own contiguous array (Fig. 21.3d). When storing child node indices
in the split nodes (as described above) we can use one bit of this index to indicate
whether the child is another split node or instead a leaf node. When this bit is set,
we know that the child is a leaf rather than a split node, and can then look up the
statistics in the leaf array. Additional memory might also be saved with this approach
by quantizing the leaf statistics and sharing the leaf elements across the tree, or
indeed across the whole forest.

21.5 Parallelization

Modern computer architectures are becoming increasingly parallel with the rise of
multi-core CPUs, graphics processing units (GPUs), and distributed compute clus-
ters. Thankfully decision forests offer numerous ways to parallelize their training.
We have explored some possible parallel implementations in [333] on the GPU, and
in [51] for multi-core and distributed environments. Decision forests can also be
implemented in hardware, for example on FPGAs [272]. As usual, the optimal par-
allelization is likely to depend on your particular scenario, but we will try to give
some high-level guidance here.

Important considerations when parallelizing decision forests include:

• Is training time important? For large training problems especially, being able to
train in a reasonable amount of time has many practical advantages, such as being
able to iteratively investigate different variants.

• Over which dimension(s) should you parallelize? You might choose the differ-
ent trees in the forest, the weak learners, the tree nodes, or the training points.
The right choice here can ensure a steady high-compute load with minimal syn-
chronization time. The depth and breadth first schedules presented above will of
course need to be adapted appropriately. Parallelizing over trees in the forest can
of course only give a substantial benefit if you have more trees than compute
cores.

• How many data do you have? With a large amount of data, you might consider
distributing batches of it to different compute nodes and processing the batches
in parallel.

The following sections discuss how to implement decision tree training and soft-
ware for specific computational architectures: multi-core CPU (Sect. 21.5.1), GPU
(Sect. 21.5.2), and distributed computing environments (Sect. 21.5.3).

21.5.1 Multi-core CPU Implementation

Modern computer architectures are increasingly parallel devices: as power con-
sumption limits the clock speed of individual processors, computing power is more
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efficiently increased by adding additional processing units. But parallelism in hard-
ware can only be effectively utilized by corresponding parallelism in multi-threaded
software. Thus for efficient computation it is essential to have both parallel algo-
rithms and the appropriate programming constructs to implement them. Fortunately,
for decision forest training and inference, we have no shortage of options for divid-
ing the computing load into independent tasks that can be performed in parallel.

21.5.1.1 Parallel-For

A foundational component in implementing parallel workloads is the ‘parallel-
for’ loop. Whereas the traditional ‘for’ loop iterates over each element in turn, the
‘parallel-for’ loop divides the elements of the loop between all available processors
and allows them to proceed simultaneously. So, unlike the traditional ‘for’ loop,
‘parallel-for’ implies and assumes that each iteration of the loop is independent of
all others since they may be processed in any order.

In the C++ programming language, the ‘parallel-for’ loop can be accessed in a
number of ways. C++ compilers that support OpenMP allow the programmer to
insert a #pragma statement before a ‘for’ loop to indicate that it should be run in
parallel. However, newer compilers that support lambda functions allow for a better
option: libraries such as Intel’s Thread Building Blocks and Microsoft’s Parallel
Patterns Library (part of Visual C++) allow the ‘parallel-for’ loop to be invoked
directly in code.

In the C� programming language and other .NET languages, the Parallel.For rou-
tine in the System.Threading.Tasks namespace provides the same functionality.

21.5.1.2 Parallel Training

When approaching a parallel implementation of forest learning, the most pressing
question is over which dimension(s) will we choose to parallelize? This choice will
have consequences for memory use, data access patterns and overall performance.
There are options to parallelize over the trees of the forest, over the weak learners,
over the leaf nodes of a tree, or over the training data points. The right choice will
be determined partly by the size of the problem (such as the amount of training data
and the number of trees required), and partly by the available hardware. The choice
is also closely linked with the choice of a breadth first or depth first training schedule
(Sect. 21.2).

One option is to parallelize over the trees in a forest. This is trivial to do, but is
not recommended on a single machine unless all the training data fits into memory:
since each thread is required to be working on different input data, data-loading
bandwidth can easily be saturated and the shared cache is not well utilized. Instead,
with large training data sets, we prefer schemes that can process the input data sys-
tematically to maximize the load throughput and cache coherency.

For example, consider the breadth first approach of Algorithm 21.2. Simply par-
allelizing the inner loop over weak learners, we can keep all cores busy processing
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the same batch of training data, reducing the need for disk bandwidth and improving
cache coherency. As the depth of the tree increases, one can limit the number of leaf
nodes considered to be part of the ‘frontier’ to keep the required memory constant
(Sect. 21.2.2). This is recommended.

Alternatively, when the depth first approach is preferred, perhaps because train-
ing data is already loaded into system memory, a worthwhile option is to parallelize
both over the weak learners and over the leaf nodes of the tree. The reason for this is
that at the higher levels of the tree, there is not much opportunity to parallelize over
nodes whereas there are many weak learners to process for each node. However, at
the lower levels of the tree, the converse is true. Parallelizing over the weak learn-
ers is again achieved through the simple use of the ‘parallel-for’ loop. Parallelizing
over the leaf nodes can be easily achieved by replacing the recursive function calls
in Algorithm 21.1 with the use of a concurrent stack data structure. Worker threads
pop from this stack to process each newly available leaf.

In the end, the best strategy depends on the problem at hand: the number of trees,
training data points, weak learners and processor cores. However, in a good multi-
threading programming environment it should be straightforward to compare the
merits of different strategies if it is not initially clear which to pursue.

21.5.1.3 Parallel Inference

One of the main benefits of using decision forests is the speed at which inference
can be performed at test time. Performing inference simply requires a handful of
feature tests to be evaluated, and this can be done independently at each data point.

A typical strategy is to form an outer loop over data points and for each data point
to loop over the trees in the forest. An inner loop then evaluates feature tests on the
data point, descending through the nodes of a tree until reaching a leaf, whereupon
the leaf statistics are aggregated for that data point. If there are many more data
points than trees, as is often the case, it makes sense to parallelize the outer loop over
the data points. This is trivial as each data point can be processed independently.

For details about data structures for efficient navigation of the tree, see Sect. 21.4.

21.5.1.4 Multi-threading Considerations

Care must be taken when executing code in a multi-threaded scenario. Although it
is safe for multiple threads to access the same data if all the accesses are read-only,
any simultaneous non-atomic read/write access can cause race conditions. An easy
way to avoid problems is to ensure that each thread writes to a different area of
output memory. For example, this is handled naturally during inference if each data
point is tested in parallel to produce its own output value that is written to an array.

Training randomized decision forests makes extensive use of random sampling.
One must take care with random number generators which contain state and are
typically not thread-safe. If, for example, two threads attempt to sample from the
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same random number generator, a race condition may occur whereby the random
number generator ends up in an indeterminate state. This can give rise to subtle
bugs, such as highly correlated samples and forests that therefore generalize poorly.

21.5.2 GPU Implementation

When there is sufficient parallelism, GPU computation can be many times faster
than CPU computation. In addition to having many more cores, GPUs also have
impressive memory bandwidth and a large texture cache.

GPU programming can be achieved through a number of different technologies.
Traditional graphics APIs like Direct3D and OpenGL allow the programmer to write
custom pixel shaders that can be used to process data points. In [333], an implemen-
tation of this kind is discussed in detail. More modern, general-purpose APIs such as
CUDA, OpenCL and C++ AMP instead do not require the programmer to deal with
graphics primitives but allow for generic computation kernels to be launched on the
GPU device. This is a far more convenient paradigm for GPU programming. (One
should be aware, however, that CUDA software can only be executed on nVidia
GPUs.)

When implementing forest training or inference for the GPU, the considerations
of the preceding section on multi-core CPU implementations are equally relevant.
A few additional considerations are also appropriate.

A GPU can have hundreds of cores—many times more cores than CPUs. A high
degree of parallelism is required to take full advantage of this compute power. For
training, typically only the breadth first approach will be appropriate for GPUs. For
inference, evaluation on the GPU is ideal when there is a significant number of
data points to process. In particular, the GPU is a great choice for parallelizing the
inference across pixels in an image. To minimize the amount of data that must be
read back from the GPU, it also makes sense to implement any post-processing on
the GPU if possible. An example of such post-processing would be to compute at
each pixel the most likely class from the resulting distribution.

To represent the trees on the device memory, we recommend storing them in 1D
or 2D texture memory to benefit from the texture cache. The trees can be stored as
described above in Sect. 21.4. Data points are read-only and can be stored in texture
memory too.

To be able to use a GPU for your application, it must be possible to implement
your particular choice of feature within the limits of GPU programming. Fortu-
nately, GPUs are well suited to on-the-fly computation of many standard image
features (see Sect. 21.3.1), such as the pixel difference features used in Chap. 13. In
this case, the raw images would be stored as textures, and the GPU kernel function
would compute the relevant feature responses by reading from the image textures.

Finally, note that it is best to avoid branching in the kernels (i.e. the use of ‘if’
statements) since the GPU executes multiple kernels in lock-step, and if different
kernels take different code paths, this thread divergence can reduce performance
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dramatically. To eliminate thread divergence, note that the jump to a left or right
child in the tree can be computed using arithmetic rather than logical expressions.

21.5.3 Distributed Computing Implementation

When the amount of computation required for forest training is very high, for exam-
ple because there is a large amount of training data, achieving acceptably rapid train-
ing may necessitate distributing the training computation over multiple machines in
a cluster.

One of the simplest ways of doing this is to duplicate all the training data over
several machines and train several trees in parallel, one tree per machine. However,
if the amount of training data is large, it may not be convenient to accommodate all
of it in a single machine’s RAM. Despite continuing rapid growth in RAM sizes,
volumetric data, perhaps from medical scans, will rapidly fill all available memory.
In any case, training even a single tree may still take too long. A partial solution to
the problem of having too little memory is to leave the training data on disk until
it is needed, using a breadth-first training schedule to ensure that data are accessed
sequentially with each training front so as to minimize disk I/O. However, this will
likely cause even further reduction in speed. Another possible solution is to use
bagging to reduce the amount of data that needs to be stored on each machine.
However, bagging reduces the amount of data that is available to each tree, which
may reduce generalization (Sect. 4.4.4).

An alternative is to distribute the training of a single tree across multiple ma-
chines. The training algorithm can be parallelized in multiple dimensions: (i) parti-
tion the data space (individual data units), (ii) partition the search space (the nodes
of the decision tree), and (iii) partition the feature space.

One particular implementation is discussed in [51]. In their implementation, the
computation proceeds breadth first, in rounds. At each round, breadth first training
processes all nodes at depth d in the decision tree and generates a new frontier at
depth d +1. Each round has three phases, which comprise a large number of parallel
tasks.

1. In Phase 1 each task operates on one data unit, one partition of the feature space
and the entire tree from the previous round. This phase processes each example,
builds a four-dimensional histogram, indexed by (node; feature; class; left/right).

2. In Phase 2 each task operates on one (node; feature) partition of the histogram,
and computes the best feature in that partition for splitting each node in that
partition (each task is responsible for a subset of nodes and features).

3. Finally, Phase 3 aggregates the information produced by Phase 2, producing a
new tree frontier by selecting the best overall feature for splitting each node, and
generating its left and right children.

This implementation, built for Kinect’s body part recognition system (see
Chap. 13), demonstrated that one can effectively distribute the training of decision
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trees. However, the efficiency (measured in computer core hours per training image)
was considerably lower than a single machine implementation due to network and
disk overheads.

In summary, a distributed implementation can allow you to scale training up
considerably further than would be possible on a single CPU or GPU. However, even
with modern tools such as DryadLINQ [51], writing a distributed implementation is
a considerable engineering effort, and so should be approached with caution.

21.6 Parameter Tuning

Decision forest training algorithms have several parameters, and achieving good test
accuracy will require some tuning of these parameters.2 Next, we summarize the
important parameters, and try to give some insight into how they should be tuned to
best effect.

21.6.1 Maximum Tree Depth, D

Trees must be trained sufficiently deeply to capture a nuanced model of the train-
ing data, but not so deep as to model sampling noise. In other words, training too
many decision levels quickly gives rise to overfitting, but too few to underfitting (see
Part I). Sometimes tree depth is constrained by simply limiting the number of deci-
sion levels applied. In practice, this solution may be suboptimal if different branches
of the tree model differing proportions of the training set. An alternative way of
constraining tree depth is to supply an appropriate training termination criterion.
Typically the termination criterion would prevent further training of a branch when
none of the candidate weak learners yields appreciable information gain. Training
depth can thus be adapted automatically to the training data. With such a termina-
tion criterion, a specified maximum tree depth is still useful, but mainly as a means
of limiting the size of the tree.

21.6.2 Number of Trees in the Forest, T

As discussed in Part I, increasing the number of trees in a decision forest can in-
crease generalization accuracy, but typically only at the expense of test time per-
formance. Usually we have found that generalization accuracy increases sublinearly
with the number of trees in a forest, whilst performance decreases linearly. With
this observation in mind, it is usually sufficient to test a few different forest sizes

2Of course, for rigorous testing, you should always use a hold-out validation set when optimizing
these parameters: optimizing on the test set will lead to misleadingly inflated accuracy scores.
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and pick the size that gives an acceptable trade-off between generalization accu-
racy and performance. Sometimes using a few trees proves sufficient, although it is
also not unusual to find an appreciable improvement in generalization accuracy with
hundreds of trees. Experience suggests that optimal values for other tree parameters
depend only relatively weakly on the number of trees in the forest.

21.6.3 Number of Candidate Weak Learners

This parameter must be chosen so as to achieve the right trade-off between modeling
the variability of the training data and randomness (which is essential to generaliza-
tion accuracy). If the space of candidate weak learners is explored too exhaustively
at training time, the danger is that the forest training procedure will produce du-
plicate trees for a given set of input data. Conversely, if too few candidate weak
learners are considered, then the resulting trees may be ineffective at capturing the
variability of the data. In practice, the dimensionality of the space of available weak
learners is an important factor in this decision. For the toy examples in Part I (which
use 1D and 2D data) and linear weak learners, using 10–20 candidates has been
found to be appropriate. However, for higher dimensional feature spaces (such as
features computed in the local vicinity of pixels in an image), it may be necessary
to explore a much greater number of candidate weak learners.

21.6.4 Number of Candidate Response Thresholds per Feature

Section 21.3.2 describes an algorithm for efficiently evaluating multiple thresholds
for each candidate feature response function. But how many threshold should be
tested? When candidate thresholds are selected by using quantiles computed over a
sample of response values, we have typically found that approximately 10 candidate
thresholds per candidate feature response yield improved test accuracy and reduced
training time.

21.7 Tricks of the Trade

Finally, we describe some miscellaneous ‘tricks of the trade’. We hope these may
prove useful to other practitioners.

21.7.1 In-place Partitioning of Training Data

During depth first training, we need to keep account of which data points reach
which tree nodes so that we can proceed to train the next child or sibling. A simple
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solution is to store lists of the indices of the data points that arrive at each node.
However, building many such lists is inefficient because or repeated allocation and
deallocation of memory. Because the number of training data points does not change
during training, a better solution is to keep all the indices in a single array that is
reordered during tree training by a sequence of in-place partition operations. When
training commences the array is in arbitrary order. At the root decision node, the
array is partitioned into two parts, one containing the samples that descend to the
left child, the other containing the samples that descend to the right child. Then each
descendent split node operates on one contiguous section of the array, further parti-
tioning it into sub-parts. In-place partitioning can be achieved by simply swapping
pairs of data point indices like in the Quicksort algorithm.

21.7.2 Retrospective Tuning of Maximum Tree Depth

So as to avoid the need to re-train the forest for multiple values of the maximum
tree depth D, we allow the tree depth to be specified at test time independently of
the maximum tree depth specified at training time. This necessitates larger memory
consumption as we need to store training data statistics in all nodes in the tree, not
just the leaf nodes. However, this trick allows for much faster experimentation with
varying values of D, essential for research applications. Once the ideal tree depth
has been found, a post-processing step can be used to build a more compact version
of the tree for which weak learner parameters are only stored for split nodes and
training data statistics are only stored for leaf nodes.

21.7.3 Dealing with Unbalanced Datasets

In some applications, one may have an unbalanced distribution of classes in the
training set, e.g. the number of negative examples may dominate positive examples.
Two commonly used heuristics for dealing with this problem are: (i) resample the
training data to have roughly the same number of positive and negative examples,
and (ii) weight the contribution of each class by its inverse frequency when comput-
ing information gain at each split node.

21.7.4 Bagging and Leaf Predictors

Bagging [42] can be a powerful randomization technique to help reduce overfitting.
It works by training the forest on only a subset of the training examples. We have
two practical tips here:
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• Firstly it can be much better to bag across independent samples. For example, it
is better to bag across images from a training set than across pixels within those
images. This ensures that each tree really does see independent samples.3

• Overfitting is most likely to occur when the weak learners become too strong.
Our second tip is therefore that it can sometimes be beneficial to perform bagging
when learning the tree structure, but to then fix the structure and re-estimate the
leaf node predictors with all the training examples. We have observed modest
improvements in generalization using this technique.

21.7.5 Augmenting Your Training Set

A common way to improve generalization is to encode specific desirable invari-
ances directly into the training data. In images, photometric (such as affine intensity
changes) and geometric (such as rotations or scale changes) transformations are
common ways to improve matters. In temporal sequences, time warping can be ap-
plied.

21.7.6 Sampling Weak Learner Parameters

We have seen in this book many examples of how decision forests are able to se-
lect good weak learners from a large space of candidates. Part of this success is
due to the random sampling of a candidate set of features at each node; roughly
speaking, over the whole tree, each ‘good’ feature is likely to be seen somewhere.
However, as discussed further in Chap. 19 and [344], one can do better by sampling
the candidates in a more informed manner. In particular, a good heuristic is the fol-
lowing. First, train a forest using a uniform sampling distribution for the features.
Next, learn the distribution of the features chosen across the nodes in the forest, op-
tionally as a function of depth. Finally, use that learned distribution as the sampling
distribution for training a new forest. In practice we have observed this to give mod-
est improvements in accuracy, as it makes it more likely that ‘good’ features will be
tested during training.

21.7.7 Reducing Correlation Between Trees in a Forest

To reduce correlation between the trees in a forest, beyond simply bagging the train-
ing examples, one could reduce the number of candidate features or thresholds near

3A similar strict separation is even more important to ensure truly independent training and test
sets.
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the root of the tree. Totally randomized trees [128] take this idea to the limit by
choosing the features and thresholds completely at random. No node optimization
is necessary here, and thus training is extremely efficient. For certain applications
this may improve generalization.

21.8 Conclusion

We have seen how decision forests can be trained and evaluated efficiently. We hope
these techniques prove useful to the reader and spur further progress in large scale
learning with forests.



Chapter 22
The Sherwood Software Library

D. Roberston, J. Shotton, and T. Sharp

This chapter describes Sherwood, the code library that accompanies this book. This
library is available in both C# and C++ versions and includes both (i) a general
purpose, object-oriented software framework for solving decision forest inference
problems, and (ii) example code in the form of a command line demo (which is
required to complete the exercises at the end of several of the chapters in Part I).
Here we describe the library’s important design features and explain how the object-
oriented framework can be applied to new inference tasks.

22.1 Introduction

Sherwood is the code library designed to accompany this book. It comprises two
important components:

• a general purpose, object-oriented software framework for applying decision
forests to a wide range of inference problems; and

• example code in the form of a command line demo that shows how this framework
can be applied to several of the problems described in Part I.

We hope that the reader will use this code library to gain insight into how deci-
sion forests work and how they can be implemented. The accompanying example
code shows how the general purpose framework can be applied to a variety of toy
problems including (i) supervised classification of 2D data, (ii) 1D-1D regression,
(iii) 2D density estimation, and (iv) semi-supervised classification of 2D data. The
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command line demo (which may be called from Matlab) can be used with the sup-
plied data to reproduce many of the figures in Part I. It is also needed to complete
the exercises at the end of the early chapters.

The object oriented framework that forms the heart of Sherwood could also serve
as a useful basis for applying decision forests to new inference tasks. To this end,
it has been written so as to be easily adaptable. It can support e.g. different types
of training data, different weak learners, and different information gain metrics.
Whilst the code has been written mainly with simplicity and ease of use in mind, it
is nonetheless sufficiently fast for use in non-trivial real world applications.

22.2 Getting Started

You can download Sherwood from:

http://research.microsoft.com/projects/decisionforests.

To use the command line demo on the Windows platform, it will be helpful
to add the directory containing the precompiled binary executable to your path.
The simplest way of doing this is by using the path command at the com-
mand prompt. For example, assuming you have copied the library to the directory
c:\temp\sherwood, you would type:

path = %PATH%;c:\temp\sherwood\bin

and to check that the demo tool is working, just type a command, e.g.:

sw help

which gives more information on the available command line modes.
You can also build the library from source for both the Windows and Linux plat-

forms. This is necessary if you wish to use the demo on Linux or if you want to use
the software as the basis of your own decision forest inference solution. Sherwood
is available in both C++ and C# versions, which are implemented very similarly.
These can be found in the cpp\ and csharp\ subdirectories of the distribution.
Feel free to use whichever version you are most comfortable with. For detailed in-
structions on building the library for Windows (with Visual Studio or Visual Studio
Express) or Linux (with gcc or Mono), please refer to the file ReadMe.txt in the
root directory.

22.3 Architectural Overview

In implementing the object-oriented software framework that forms the basis of
Sherwood, the most important goal was code reuse. A key concern was to make
effective use of abstraction, i.e. to represent the interaction between the general pur-
pose training code and application-specific training tasks by generic interfaces. This
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Fig. 22.1 UML diagram to illustrate the architecture of the Sherwood library. To facilitate
code reuse, the general purpose forest and tree training classes interact with the training
data only via abstract interfaces ITrainingContext, IStatisticsAggregator and
IFeatureResponse. Note that some members and classes have been omitted for clarity

approach is possible mainly because typical decision forest implementations have
much in common. It is testament to the flexibility of decision forests that a single
framework (containing only a few hundred lines of code) can be applied so easily to
so many different inference problems.

Figure 22.1 illustrates the architecture of the Sherwood library using a UML
diagram. This diagram shows the relationships between the classes that participate
in forest training and test. Within the library decision forests are represented by
the Forest, Tree, and Node classes. Naturally, a Forest contains one or more
Tree instances, and each Tree contains one or more Node instances. A Node can
represent either a split node or a leaf node. Both split nodes and leaf nodes have a
set of training sample statistics (an IStatisticsAggregator). Additionally, split
nodes have an associated weak learner, i.e. the feature response function selected
during the forest training procedure (an IFeatureResponse) and an associated
decision threshold.

Decision forest training is the responsibility of the ForestTrainer class. So
that the training framework can be simply reused across problem domains, train-
ing tasks are represented by abstract interfaces that need to be implemented within
client code. These interfaces abstract out what is common amongst decision forest
training implementations, such as the computation of information gain over candi-
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date partitions of a set of data points, or how to decide when to stop training a branch
of the tree. The important interfaces are as follows:

• IDataPointCollection. This class represents a collection of data points. In
Part I, data points v were considered to be vectors of feature values. In principle,
however, a data point could represent anything for which a scalar feature response
can be computed, e.g. an image, or a pixel in an image. Since data points can have
various forms, the training framework interacts with collections of data points
only via the IDataPointCollection abstraction.

• IStatisticsAggregator. This class is responsible for aggregating statistics
over subsets of the training data points. During training, these statistics are used
both (i) to compute information gain over partitions of the data resulting from
the application of candidate weak learners, and (ii) to decide when to stop train-
ing a particular tree branch. At test time, statistics computed during training are
used for inference. Which statistics should be aggregated depends on the prob-
lem at hand. For example, when training a classification tree, we would typically
aggregate histograms over the data points’ class labels.

• IFeatureResponse. This class is responsible for computing feature responses
f (v,φ) on incoming data points, i.e. for mapping data points to scalar values.
Combined with a threshold τ , feature response functions form the basis of the
weak learners used to form binary partitions over sets of data points (see (21.1)).
In Sherwood, feature response function parameters φ are generated at random by
the client code. For illustration, a simple weak learner might partition data points
in R

d by splitting them by a plane; in this case the feature response function might
be parameterized by the plane normal.

• ITrainingContext. This is the main interface by which the general purpose
training framework interacts with the training data. At training time, application-
specific implementations of ITrainingContext are responsible for random
generation of candidate feature response functions (IFeatureResopnse in-
stances), for creating IStatisticsAggregator instances, and for the computa-
tion (based on statistics computed over parent and child nodes) of the information
gain associated with each candidate weak learner.

22.4 Performance Considerations

An important concern for implementors of decision forest algorithms is perfor-
mance. Chapter 21 describes a variety of advanced techniques for efficient imple-
mentation of decision forest algorithms, for example, by using breadth first training
to increase cache coherence. Because the Sherwood library was designed with sim-
plicity and readability in mind, we have implemented only the simpler depth first
training algorithm and stopped short of a multithreaded (parallel) implementation.
However, we have endeavored to write reasonably efficient code nonetheless. Next,
we will draw attention to some important performance considerations:
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• At training time, we keep account of which data points reach which node by
simply reordering a single array of data point indices. See Sect. 21.7.1.

• The nodes that comprise each tree are stored in simple, linear arrays (see
Fig. 21.3b). Because the trees used here are binary, the indices of a node’s two
(left and right) children can always be determined simply using Eqs. (21.5) and
(21.6). One limitation of this approach is that it may be memory inefficient to
store very unbalanced trees in this way.

• Because value types are used to represent tree nodes, feature response functions,
and training data statistics, trees can be stored contiguously in memory, i.e. in
simple linear arrays. Avoiding many small memory allocations increases perfor-
mance by reducing the amount of work for the memory manager and increasing
cache coherence.

• Weak learners comprise a feature (which maps input data points to floating point
response values) and an associated threshold value (see Chap. 21). During for-
est training, the parameters (φ,ψ) of the feature response function f (21.1) are
chosen at random but for each candidate feature response function, Sherwood
performs a search over candidate thresholds so as to find thresholds that are ef-
fective in partitioning the data. For a given feature response function, response
values computed over the training data points at the node being split are used to
determine the range over which to search for candidate thresholds.

22.5 Application Illustration: Supervised Classification

As an illustration of how the Sherwood library can be applied to a specific inference
problem, we describe how it has been adapted to the supervised classification task
described in Chap. 4. A similar approach has been used to adapt the framework to
other inference tasks described in Part I, such as the density estimation, regression,
and semi-supervised classification.

The steps required are:

1. Implement the abstract interfaces by which the training framework interacts with
the training data. These are: IDataPointCollection, IFeatureResponse,
IStatisticsAggregator, and ITrainingContext.

2. Use the ForestTrainer.TrainForest() method to create a new Forest.
3. Optionally serialize the trained forest to a binary file for later deserialization and

use.
4. Apply the trained forest to test data: tune parameters on a validation set, and then

apply the forest to a previously unseen test set.

Next, we discuss each of these steps in turn, with particular reference to the super-
vised classification task. Given labeled training data points, the goal here is to assign
a probability distribution over class labels to previously unseen test data points.
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22.5.1 Implementing Interfaces

The first step is to write application-specific implementations of the interfaces by
which the training framework interacts with the training data. These are dealt with
in turn below:

IDataPointCollection. Implementations of this interface store collections of
data points. Implementations of IFeatureResponse and IStatisticsAggreg-
ator collaborate with implementations of IDataPointCollection to evaluate
feature responses and aggregate statistics over sets of training data points. All of the
toy examples in the Sherwood library use the same basic IDataPointCollection
implementation, DataPointCollection. This simple class stores vector data
points of arbitrary dimension and provides functionality for feature vectors (and
associated class labels) to be read from disk.
IFeatureResponse. The purpose of the IFeatureResponse implementations

is to assign a floating point feature response to incoming data points. In combina-
tion with a selected response threshold, which is stored by the containing node, an
IFeatureResponse instance forms the weak learner that is used at split nodes to
partition incoming data points between its child nodes. A simple feature response
is obtained computing the dot product of the feature vector with a unit vector cho-
sen at random. In our 2D feature space, thresholding this feature response gives rise
to a straight line decision boundary (as illustrated in Fig. 3.2b). The toy examples
within Sherwood use the LinearFeature2d class (a concrete implementation of
IFeatureResponse) to compute such a feature response for 2D data points.
IStatisticsAggregator. The purpose of IStatisticsAggregator instances

is to aggregate statistics over subsets of the training data points. In the con-
text of our classification task, we aggregate histograms over the training data
points’ class labels. This is the role of the HistogramAggregator class
(a concrete implementation of the IStatisticsAggregator interface). This
class maintains a vector of class label counts, which are incremented inside
the Aggregate() method. HistogramAggregator also implements a method
GetEntropy() for computation of entropy over the histogram—this is used
within ClassificationTrainingContext (see below) to compute the infor-
mation gain obtained using a candidate partition function.
ITrainingContext. Finally, ITrainingContext implementations are respon-

sible for (i) computing information gain over sets of data points and (ii) deciding
when to stop training each branch. For classification tasks, we define informa-
tion gain in terms of the reduction in entropy associated with the distributions
over class labels at the child nodes compared to the entropy associated with the
distribution at the parent node (4.2). At training time, this metric is used by the
framework (via the ComputeInformationGain() method) to select the optimal
weak learner at each split node. ITrainingContext also defines the termina-
tion criterion used by the framework to decide when to stop training a particular
branch (the ShouldTerminate() method). For simple classification problems
a sufficient termination criterion is when the information gain is less than some
threshold, e.g. 0.01.
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22.5.2 Training the Forest

Having implemented the application-specific interfaces by which the training frame-
work interacts with the training data, the next step is to train the forest. The fol-
lowing C# code fragment (taken from ClassificationDemo.cs) illustrates how
we can load training data, define the forest training parameters, and run training.
Closely equivalent C++ code can be found in ClassificationDemo.cpp.

// Load 2D training data for 2 class classification problem.
DataPointCollection trainingData = DataPointCollection.Load (

path,
2,
DataDescriptor.HasClassLabels );

// The framework interacts with the training data via an
ITrainingContext instance

ITrainingContext trainingContext = new
ClassificationTrainingContext (
trainingData.CountClasses() );

// We will a train a forest with T=10 trees of maximum depth
D=8

TrainingParameters parameters = new TrainingParameters
{

MaxDecisionLevels = 8,
NumberOfCandidateFeatures = 30,
NumberOfCandidateThresholdsPerFeature = 20,
NumberOfTrees = 10

};

// Initiate training
ForestTrainer<LinearFeature2d> trainer = new

ForestTrainer<LinearFeature2d>();
Forest<LinearFeature2d> forest = trainer.TrainForest (

parameters, trainingContext, trainingData );

22.5.3 Serialization and Deserialization

Having trained a forest, the Sherwood library provides the capability to save the
tree to a binary file for later use. This is useful if training is very time-consuming.
The Forest.Serialize() method serialize a binary representation of a forest to
a binary stream; the Forest.Deserialize() method instantiates a new forest
based on a previously created binary file.
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22.5.4 Testing

Having trained our classification forest, the final step is to apply it to previously un-
seen test data. The following code fragment shows how this is achieved. First, the
forest is applied to the test data using a call to Forest.Apply(). This returns an
array of indices that describes which leaf nodes were reached by the data points for
each tree. Next, a posterior class label distribution for each test data point is com-
puted by combining the training data statistics from the leaf nodes reached by that
data point in each tree. In the context of supervised classification, this is achieved
simply by aggregating the histograms computed over the training data points’ class
labels and stored at each leaf. Optionally, we could save the posterior distributions
to file or use them for measuring accuracy on a validation set.

// Load 2D test data.
DataPointCollection testData = DataPointCollection.Load (

path,
2,
DataDescriptor.Unadorned );

// Load a trained forest saved previously to binary file
(from forestPath)

Forest<LinearFeature2d> forest =
Forest<LinearFeature2d>.Deserialize ( forestPath );

// Apply the forest to the test data
int[][] leafIndicesPerTree = forest.Apply(testData);

int nClasses =
forest.GetTree(0).GetNode(0).
TrainingDataStatistics.BinCount;

HistogramAggregator[] result = new
HistogramAggregator[testData.Count()];

for (int i = 0; i < testData.Count(); i++)
{

// Aggregate statistics for this sample over all leaf
nodes reached

result[i] = new HistogramAggregator(nClasses);
for (int t = 0; t < forest.TreeCount; t++)
{

int leafIndex = leafIndicesPerTree[t][i];
var leafStats =

forest.GetTree(t).GetNode(leafIndex).
TrainingDataStatistics;

result[i].Aggregate(leafStats);
}

}
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22.6 Other Applications

In addition to the supervised classification task, the Sherwood library contains ex-
ample code to show how decision forests can be applied to several of the other
inference tasks described in Part I. Whilst this example code will not be described
in so much detail as that for supervised classification, it will be useful to draw the
reader’s attention to the following implementation details:

Density Estimation Density estimation works by fitting a Gaussian model to the
training data points at each tree node (see Chap. 6). During training, weak learners
are selected that partition the training data so as to achieve maximum information
gain. However, simplistic maximum likelihood estimation of Gaussian parameter
values can easily result in overfitting for small numbers of training data points (so
that the resulting Gaussians exhibit artificially high correlations between the data
dimensions). A possible solution is to enforce a minimum number of data points at
each node, perhaps explicitly or perhaps as a by-product of limiting the maximum
number of tree levels D. However, the example code adopts the more elegant so-
lution of defining a simple prior on the Gaussian parameter estimation, similar to
the Wishart prior [28]. This has the property that when the number of observations
is small, the prior model tends to dominate; conversely when the number of ob-
servations is large, the data tends to dominate. The prior has two hyperparameters,
which can be specified as parameters to the command line demo that accompanies
Sherwood. These hyperparametres reflect (i) the number of ‘effective’ prior obser-
vations (i.e. the relative significance assigned to the prior and the data), and (ii) the
covariance matrix of these prior observations (which is assumed for simplicity to be
isotropic).

1D-1D Regression The purpose of the toy 1D-1D regression example is to show
how a regression forest can be used to learn a mapping from a 1D input space to a
1D output space. Using 1D training data labeled with 1D target values, the forest is
trained to predict 1D output values for arbitrary 1D input values. Regression trees
work by fitting a piecewise linear model to the input data, in which each component
is described by line offset and gradient parameters. These parameters are estimated
using Bayesian linear regression, which enables us to predict not only a single out-
put value for a given input, but a Gaussian probability distribution over possible
output values. This has the important benefit that output values are less confidently
predicted for regions of the input space that contain less training data.

Semi-supervised Classification Semi-supervised classification works by propa-
gating class labels to unlabeled training data points from the ‘nearest’ labeled train-
ing data points. The distance between each unlabeled data point and each labeled
data point is computed using the geodesic distance defined in (8.6). As in Chap. 8,
we model the training data density at each node of the classification tree using Gaus-
sians. The position of a data point is considered to be the mean of the Gaussian asso-
ciated with the leaf node that contains it, and pairwise distances between each pair
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of leaf nodes can be computed using the symmetric Mahalanobis distance defined in
(8.7). Then the geodesic distance between all pairs of leaf nodes can then be found
efficiently using e.g. the Floyd–Warshall algorithm [110].

22.7 Summary

This chapter has described Sherwood, the free research code library that accompa-
nies this book. The reader is encouraged to download and use this library. We hope
that it will provide a means of gaining insight into how decision forests work and
how they can be implemented. The Sherwood library should also provide a useful
basis for applying decision forests to new inference tasks not discussed in this book.



Chapter 23
Conclusions

A. Criminisi and J. Shotton

This book has discussed decision forests and their use in many computer vision and
medical imaging applications. A number of tutorial experiments, illustrations and
exercises have guided the reader in understanding properties and nuances of forests
both in theory and practice.

23.1 Summary

Part I introduced the theoretical underpinnings and discussed the properties of de-
cision forests through toy illustrations and exercises. The flexibility of forests has
been demonstrated via their use for: classification, regression, density estimation,
manifold learning, semi-supervised learning, and active learning.

Part II illustrated various real uses of decision forests in computer vision and
medical image analysis. The range of practical application goes from tracking peo-
ple in security cameras, to domestic entertainment, assisted driving and diagnosis
and treatment of tumors.

Part III provided useful suggestions on how to implement forests efficiently.
Also, research code has been made available for free in the form of the Sherwood
software library.

Together with being a tutorial on decision forests, this book has also explored
some relatively new ideas such as the use of forests for density estimation, manifold
learning and semi-supervised learning. Some of these concepts are less mature than
others and require more experimentation in practical applications in order to be
thoroughly understood and assessed. However, it is encouraging to see how the same
underlying model can be applied to so many diverse learning tasks.

A. Criminisi (B) · J. Shotton
Microsoft Research Ltd., 7 J.J. Thomson Avenue, Cambridge CB3 0FB, UK

A. Criminisi, J. Shotton (eds.), Decision Forests for Computer Vision and
Medical Image Analysis, Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-4929-3_23, © Springer-Verlag London 2013
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23.2 Successes and Challenges

Success Stories In the past few years, computer vision has reached a new level of
maturity which has been reflected in a number of practical, commercial applications.
For instance: Automatic number plate recognition (ANPR) has been used success-
fully for many years, e.g. in the United Kingdom. Face detection technology [389]
is now present in almost every webcam and in compact photo cameras. Automatic
panorama stitching1 can be run from your own smartphone. Microsoft Kinect [247]
has demonstrated how vision technology can be deployed to millions of people and
change the way they interact with machines, from the comfort of their sofa. GrabCut
for interactive image segmentation [315] ships as part of Microsoft Office 2010.2

Other commercial realities include Metail3 for on-line garment shopping, Oxford
Metrics4 for motion capture, automatic road surveying, movie post-production and
“moment capture” photography, and Mobileye and Seeing Machines for assisted
driving5, to name just a few.

Remaining Challenges However, despite these successes, much research is still
necessary to build reliable tools that can “understand” all types of images and
videos, in all conditions. This may necessitate being able to train on millions if
not billions of images. How can we acquire the necessary labeled training data? Or,
perhaps, with better models of the visual world, which capture its variability effi-
ciently, we could achieve accurate recognition with small amount of supervision.
Being able to handle millions of categories is an unsolved problem. How easily can
forests or alternative techniques scale to those levels?

Can we ever achieve perfectly accurate automatic face identification despite vari-
ations in hair style, beard, lighting, head-wear etc.? Can we photograph a plant or
animal and automatically return its scientific name with perfect accuracy? Can we
detect suspicious behavior in crowded airports with sufficient accuracy to make this
tool a worth-while investment? Can we develop fully autonomous, cheap and light-
weight visual navigation systems for the blind, or for driverless cars? Can we build
automatic, accurate medical screening machines which would alert patients of possi-
ble anomalies and suggest the optimal course of action? Can we automatically iden-
tify every single cancerous region in histopathological images, or radiology scans
and help doctors defeat cancer? Can automatic computer vision ever surpass human
vision? Think of all the depth-, infra-red- and xray-sensing devices out there. If those
“cameras” could be augmented with the level of effortless semantic interpretation
that humans have then they would really surpass human visual capabilities.

1E.g. Photosynth http://photosynth.net/.
2http://office.microsoft.com/.
3http://www.metail.com/.
4http://www.omgplc.com/.
5http://www.mobileye.com/, http://www.seeingmachines.com.
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23.3 Conclusion

The work presented here has only scratched the surface of what will be possible in
the future. We are still far from solving the challenges above. However, we truly
hope that this book has excited the reader as much as it has excited its authors.
We hope that this structured description of decision forests has helped the reader to
make sense of what they are and what they can do. Certainly, writing this book has
helped the authors learn more about the different fields of machine learning, various
existing algorithms, how they relate to one another, and their practical nuances. We
also hope that the theory, practical algorithms, and code provided in this book can
serve as a springboard for future research to advance the state of the art in automatic
image understanding, for all those applications that are still waiting to be invented.

Further Material The web site below presents further learning material in the
form of PowerPoint slides, animations, experiments, the Sherwood software li-
brary and other resources that will be made available in the future. http://research.
microsoft.com/projects/decisionforests.
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